MNN项目中Qwen2-7B模型导出问题分析与解决方案
2025-05-22 13:53:11作者:平淮齐Percy
问题现象
在使用MNN项目中的llm_export.py脚本导出Qwen2系列大语言模型时,用户发现一个值得注意的现象:Qwen2-0.5B和Qwen2-1.5B模型可以正常导出,但在尝试导出Qwen2-7B模型时,进程会被系统终止(显示"Killed")。这种情况发生在配置为128核CPU和132GB内存的高性能服务器上。
问题根源分析
从技术日志中可以识别出几个关键点:
- 模型导出过程实际上已经完成,日志显示"export done!",说明主要模型转换工作已经成功
- 问题出现在导出后的处理阶段,系统主动终止了进程
- 结合服务器配置和7B模型规模,可以判断这是由内存不足(OOM)引起的问题
深入分析可知,问题出在onnxslim优化阶段。onnxslim是MNN提供的一个模型优化工具,用于精简和优化转换后的模型。对于7B这样的大模型,onnxslim在优化过程中需要消耗大量内存,超过了系统限制,导致进程被终止。
解决方案
针对这个问题,MNN项目提供了直接的解决方案:在导出命令中添加--skip_slim参数。这个参数会跳过onnxslim优化步骤,避免内存消耗过大的问题。
完整的导出命令应修改为:
python3 llm_export.py \
--type Qwen2-7B-Instruct \
--path ~/models/qwen2-7b-instruct \
--export \
--export_token \
--export_embed --embed_bin \
--export_mnn \
--skip_slim
技术建议
-
大模型处理策略:对于7B及以上规模的LLM模型,建议总是使用
--skip_slim参数,因为模型本身已经很大,优化带来的收益可能不明显 -
资源监控:在执行大模型导出前,建议监控系统资源使用情况,特别是内存和交换空间
-
分阶段处理:如果确实需要进行模型优化,可以考虑将导出和优化分为两个独立步骤,分别执行
-
模型选择:根据实际应用场景选择合适的模型规模,7B模型需要更多的计算资源,可能不是所有场景都需要
总结
MNN项目对大语言模型的支持已经相当完善,但在处理超大模型时仍需注意系统资源限制。通过合理使用--skip_slim参数,可以成功导出Qwen2-7B等大模型。这一经验也适用于MNN项目中其他大规模模型的导出和转换工作。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210