首页
/ MiniCPM-V模型Lora微调后的加载与测试方法详解

MiniCPM-V模型Lora微调后的加载与测试方法详解

2025-05-11 05:04:20作者:苗圣禹Peter

MiniCPM-V作为一款多模态大模型,在实际应用中经常需要进行微调以适应特定任务。本文将详细介绍如何对MiniCPM-V进行Lora微调后的模型加载与测试,帮助开发者快速掌握这一关键技术。

Lora微调后的模型加载

MiniCPM-V的Lora微调完成后,正确的加载方式是确保模型能够正常工作的关键。最新版本的加载方法如下:

  1. 首先使用AutoPeftModelForCausalLM加载微调后的模型
  2. 然后加载vpm_resampler_embedtokens权重文件
  3. 最后将权重合并到模型中

具体代码实现如下:

from peft import AutoPeftModelForCausalLM
import torch

path_to_adapter = "your_lora_checkpoint_path"
model = AutoPeftModelForCausalLM.from_pretrained(
    path_to_adapter,
    device_map="cuda:0",  # 或"cpu"根据实际情况选择
    trust_remote_code=True
).eval()

vpm_resampler_embedtokens_weight = torch.load(f"{path_to_adapter}/vpm_resampler_embedtokens.pt")
model.load_state_dict(vpm_resampler_embedtokens_weight, strict=False)

模型测试方法

加载完成后,可以通过以下方式进行测试:

from chat import MiniCPMVChat, img2base64
import json

im_64 = img2base64('your_image_path.jpg')
msgs = [{"role": "user", "content": "Your question here"}]

inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = model.chat(inputs)
print(answer)

常见问题解决方案

在实际操作中,开发者可能会遇到以下问题:

  1. 设备配置问题:当出现"NotImplementedError: Cannot copy out of meta tensor; no data!"错误时,需要将device_map从"auto"改为具体的设备如"cuda:0"或"cpu"。

  2. 参数缺失问题:如果遇到"missing required positional arguments"错误,需要确保chat方法的所有必需参数都已提供,包括tokenizer等。

  3. 显存不足问题:对于24G显存可能不足的情况,可以考虑使用模型量化技术或减少batch size来降低显存需求。

模型合并技术

对于需要将Lora微调后的模型与基础模型合并的情况,可以采用权重合并的方式。这一过程需要:

  1. 加载基础模型和Lora适配器
  2. 将Lora权重合并到基础模型中
  3. 保存合并后的完整模型

这种方法可以生成一个独立的模型文件,便于后续部署和使用。

最佳实践建议

  1. 始终使用项目最新的代码版本,以确保兼容性
  2. 测试时使用与训练数据分布相似的样本
  3. 对于关键应用场景,建议进行全面的评估而不仅是简单测试
  4. 记录不同超参数配置下的测试结果,便于后续优化

通过以上方法,开发者可以有效地对MiniCPM-V进行Lora微调后的加载和测试,充分发挥模型在特定任务上的性能。

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K