IPython 技术文档
2024-12-20 20:23:55作者:丁柯新Fawn
1. 安装指南
IPython 是一个交互式计算壳,支持多种编程语言,最初是为 Python 编程语言开发的。以下是安装 IPython 的指南:
-
确保你的系统安装了 Python。IPython 7.17 及以上版本需要 Python 3.7 或更高版本,IPython 7.10 到 7.16 需要Python 3.6 或更高版本,IPython 7.0 需要Python 3.5 或更高版本,IPython 6.x 需要Python 3.3 或更高版本。如果你需要支持 Python 2.7,则必须使用 IPython 5.x LTS 版本。
-
使用 Python 的包管理工具 pip 安装 IPython:
pip install ipython
2. 项目的使用说明
IPython 提供了丰富的特性,以下是一些主要功能的使用说明:
- 交互式计算环境:直接在命令行中执行 Python 代码。
- 对象详细检查:使用
?或??查看对象信息和源代码。 - 输入历史记录:使用键盘上的上下箭头浏览之前的命令。
- 输出结果缓存:在会话中缓存输出结果,方便引用。
- 扩展的自动完成:按下
Tab键自动完成变量名、文件名和函数名等。 - 魔术命令:使用特定的命令(以
%开头)执行系统命令或 IPython 功能。 - 配置系统:轻松切换不同的配置设置。
3. 项目API使用文档
IPython 的 API 允许你在其他 Python 程序和 GUI 中嵌入 IPython 功能。以下是几个关键的 API:
IPython.start_ipython():启动一个新的 IPython 会话。IPython.get_ipython():获取当前的 IPython 实例。IPython magic():执行一个魔术命令。
更多 API 使用细节和示例,请参考 IPython 的官方文档。
4. 项目安装方式
你可以以以下方式安装 IPython:
-
使用 pip:这是最简单的方式,只需在终端中运行以下命令:
pip install ipython -
开发版本:如果你想运行 IPython 的最新开发版本,可以克隆其 GitHub 仓库并在本地运行:
git clone https://github.com/ipython/ipython.git cd ipython python -m IPython
请注意,安装开发版本可能需要额外的依赖和步骤,详情请查阅官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
638
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
148
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
226
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310