LayoutGPT 开源项目教程
2024-09-18 17:21:04作者:平淮齐Percy
1. 项目介绍
LayoutGPT 是一个基于大型语言模型(LLMs)的视觉规划和生成工具。它能够从文本输入生成合理的图像布局和室内场景布局,支持从2D图像到3D室内场景的多领域布局生成。LayoutGPT 通过使用样式表语言的上下文视觉演示来增强LLMs的视觉规划能力,能够将复杂的语言概念(如数值和空间关系)转换为布局安排,从而实现忠实的文本到图像生成。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 conda
。然后,创建一个新的 conda
环境并安装所需的依赖项:
conda create -n layoutgpt python=3.8 -y
pip install -r requirements.txt
2.2 下载预训练模型
为了使用 LayoutGPT 进行图像生成,你需要下载一些预训练模型:
# 下载 GLIGEN 模型
wget https://huggingface.co/gligen/gligen-generation-text-box/resolve/main/diffusion_pytorch_model.bin -O gligen/gligen_checkpoints/checkpoint_generation_text.pth
# 下载 GLIP 模型
cd eval_models/GLIP
python setup.py build develop --user
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth -O MODEL/swin_large_patch4_window12_384_22k.pth
wget https://huggingface.co/GLIPModel/GLIP/resolve/main/glip_large_model.pth -O MODEL/glip_large_model.pth
# 下载 ATISS 模型
cd ATISS
python setup.py build_ext --inplace
pip install -e .
2.3 数据准备
下载并解压 LayoutGPT 所需的 2D 和 3D 数据集:
# 下载 2D 图像布局数据集
wget https://example.com/dataset/NSR-1K.zip -O dataset/NSR-1K.zip
unzip dataset/NSR-1K.zip -d dataset/
# 下载 3D 场景数据集
cd ATISS
wget https://example.com/dataset/3D-FUTURE-model.zip -O 3D-FUTURE-model.zip
wget https://example.com/dataset/data_output.zip -O data_output.zip
unzip 3D-FUTURE-model.zip -d 3D-FUTURE
unzip data_output.zip
2.4 运行 LayoutGPT
生成 2D 图像布局:
python run_layoutgpt_2d.py --icl_type k-similar --K 8 --setting counting --llm_type gpt4 --n_iter 5
生成 3D 室内场景:
python run_layoutgpt_3d.py --dataset_dir /ATISS/data_output --icl_type k-similar --K 8 --room bedroom --llm_type gpt4 --unit px --normalize --regular_floor_plan
3. 应用案例和最佳实践
3.1 2D 图像布局生成
LayoutGPT 可以用于生成各种类型的 2D 图像布局,例如:
- 产品设计:生成产品展示图的布局。
- 网页设计:生成网页的布局结构。
- 广告设计:生成广告图片的布局。
3.2 3D 室内场景生成
LayoutGPT 还可以用于生成 3D 室内场景,例如:
- 家居设计:生成不同风格的家居布局。
- 建筑设计:生成建筑内部的布局设计。
- 游戏场景设计:生成游戏中的室内场景。
4. 典型生态项目
4.1 GLIGEN
GLIGEN 是一个基于文本的图像生成模型,与 LayoutGPT 结合使用可以生成高质量的图像。
4.2 GLIP
GLIP 是一个图像定位模型,用于评估生成的图像布局的准确性。
4.3 ATISS
ATISS 是一个用于生成 3D 室内场景的模型,与 LayoutGPT 结合使用可以生成复杂的 3D 场景。
通过这些生态项目的结合,LayoutGPT 可以在多个领域中发挥重要作用,提供高效、准确的视觉规划和生成解决方案。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5