LayoutGPT 开源项目教程
2024-09-18 09:39:50作者:平淮齐Percy
1. 项目介绍
LayoutGPT 是一个基于大型语言模型(LLMs)的视觉规划和生成工具。它能够从文本输入生成合理的图像布局和室内场景布局,支持从2D图像到3D室内场景的多领域布局生成。LayoutGPT 通过使用样式表语言的上下文视觉演示来增强LLMs的视觉规划能力,能够将复杂的语言概念(如数值和空间关系)转换为布局安排,从而实现忠实的文本到图像生成。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 conda。然后,创建一个新的 conda 环境并安装所需的依赖项:
conda create -n layoutgpt python=3.8 -y
pip install -r requirements.txt
2.2 下载预训练模型
为了使用 LayoutGPT 进行图像生成,你需要下载一些预训练模型:
# 下载 GLIGEN 模型
wget https://huggingface.co/gligen/gligen-generation-text-box/resolve/main/diffusion_pytorch_model.bin -O gligen/gligen_checkpoints/checkpoint_generation_text.pth
# 下载 GLIP 模型
cd eval_models/GLIP
python setup.py build develop --user
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth -O MODEL/swin_large_patch4_window12_384_22k.pth
wget https://huggingface.co/GLIPModel/GLIP/resolve/main/glip_large_model.pth -O MODEL/glip_large_model.pth
# 下载 ATISS 模型
cd ATISS
python setup.py build_ext --inplace
pip install -e .
2.3 数据准备
下载并解压 LayoutGPT 所需的 2D 和 3D 数据集:
# 下载 2D 图像布局数据集
wget https://example.com/dataset/NSR-1K.zip -O dataset/NSR-1K.zip
unzip dataset/NSR-1K.zip -d dataset/
# 下载 3D 场景数据集
cd ATISS
wget https://example.com/dataset/3D-FUTURE-model.zip -O 3D-FUTURE-model.zip
wget https://example.com/dataset/data_output.zip -O data_output.zip
unzip 3D-FUTURE-model.zip -d 3D-FUTURE
unzip data_output.zip
2.4 运行 LayoutGPT
生成 2D 图像布局:
python run_layoutgpt_2d.py --icl_type k-similar --K 8 --setting counting --llm_type gpt4 --n_iter 5
生成 3D 室内场景:
python run_layoutgpt_3d.py --dataset_dir /ATISS/data_output --icl_type k-similar --K 8 --room bedroom --llm_type gpt4 --unit px --normalize --regular_floor_plan
3. 应用案例和最佳实践
3.1 2D 图像布局生成
LayoutGPT 可以用于生成各种类型的 2D 图像布局,例如:
- 产品设计:生成产品展示图的布局。
- 网页设计:生成网页的布局结构。
- 广告设计:生成广告图片的布局。
3.2 3D 室内场景生成
LayoutGPT 还可以用于生成 3D 室内场景,例如:
- 家居设计:生成不同风格的家居布局。
- 建筑设计:生成建筑内部的布局设计。
- 游戏场景设计:生成游戏中的室内场景。
4. 典型生态项目
4.1 GLIGEN
GLIGEN 是一个基于文本的图像生成模型,与 LayoutGPT 结合使用可以生成高质量的图像。
4.2 GLIP
GLIP 是一个图像定位模型,用于评估生成的图像布局的准确性。
4.3 ATISS
ATISS 是一个用于生成 3D 室内场景的模型,与 LayoutGPT 结合使用可以生成复杂的 3D 场景。
通过这些生态项目的结合,LayoutGPT 可以在多个领域中发挥重要作用,提供高效、准确的视觉规划和生成解决方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
基于MC1496的鉴相器资源文件介绍:一款强大的电子电路工具 macOS安装python3.8:轻松掌握Python环境配置【亲测免费】 YOLOv8系列--AI自瞄项目:实现高效目标检测的利器 BT1120规范资源下载介绍:数字视频信号传输的关键标准 sockperf网络测试工具及使用方法下载仓库 探索renren-fast2.1与renren-security3.2:轻量级权限管理系统的卓越之选 商用车智能底盘技术路线图 Linux服务器TDSQL单机安装指南:轻松部署高效数据库 SAP中文标准教材汇总资源下载说明 AUTOSAR_SWS_E2ELibrary资源文件介绍:汽车行业E2E通信标准化解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134