Apollo自动驾驶平台中SMOKE检测器CPU性能问题分析
2025-05-07 07:48:48作者:柏廷章Berta
背景介绍
在自动驾驶感知系统中,摄像头目标检测是一个关键环节。Apollo自动驾驶平台提供了多种检测算法,其中SMOKE检测器是基于单目3D目标检测的算法。近期有开发者反馈,在Apollo 8.0版本中使用SMOKE检测器时遇到了严重的CPU资源占用问题。
问题现象
在配置了SMOKE检测器的感知流水线中,系统表现出以下异常特征:
- CPU使用率异常升高,所有核心都达到接近100%的使用率
- 检测延迟明显增加,单帧处理时间超过200ms
- 整个感知系统的实时性受到影响,障碍物输出出现明显延迟
- 相比之下,使用YOLO检测器的流水线表现正常,CPU使用率和延迟都在合理范围内
技术分析
通过对SMOKE检测器代码的深入分析,我们发现其性能问题主要源于以下技术实现细节:
- 后处理阶段完全在CPU上执行:SMOKE的后处理算法没有针对GPU进行优化,所有计算都在CPU上完成
- 基于LibTorch的推理:虽然使用了深度学习框架,但整个推理过程没有充分利用GPU加速
- 缺乏TensorRT优化:与YOLO检测器不同,SMOKE没有使用TensorRT进行推理优化
解决方案建议
对于Apollo 8.0用户,我们建议:
- 短期方案:在配置文件中改用YOLO检测器,这是经过充分优化的替代方案
- 长期方案:考虑升级到Apollo 9.0,该版本提供了全新的两阶段YOLO检测器,包含完整的训练代码和更好的性能优化
技术演进方向
从Apollo平台的技术演进来看,开发团队已经明确:
- SMOKE检测器将不再进行GPU和TensorRT优化
- 未来重点将放在基于YOLO的检测方案上
- 新版本提供了更完善的单目3D检测训练框架
总结
在自动驾驶感知系统的开发中,算法选择需要综合考虑精度和性能。SMOKE检测器虽然在某些场景下可能提供较好的检测效果,但其CPU实现方式导致了严重的性能瓶颈。对于追求实时性的应用场景,建议采用经过充分优化的YOLO系列检测器,特别是在Apollo 9.0及以后版本中提供的新方案。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1