SQLGlot项目中的Presto到Databricks的JSON函数转换问题解析
在SQL方言转换工具SQLGlot中,我们发现了一个关于Presto到Databricks转换过程中JSON函数处理的有趣案例。这个案例涉及到json_extract和json_size两个关键函数的转换逻辑。
问题背景
当从Presto SQL转换到Databricks SQL时,json_extract函数通常会被转换为Databricks中的冒号语法。例如:
-- Presto
"json_extract"(params, '$.target')
-- Databricks
params:target
然而,当这个函数出现在CASE WHEN语句中时,转换逻辑出现了不一致的情况。开发者发现函数没有被正确转换为Databricks的冒号语法,而是保留了原始的JSON_EXTRACT函数形式。
技术细节分析
通过深入分析,我们发现这个问题实际上在最新版本的SQLGlot中已经得到修复。测试表明,在最新版本中,无论json_extract函数出现在查询的哪个位置,都能正确转换为Databricks的冒号语法。
对于json_size函数,目前SQLGlot还没有实现从Presto到Databricks的自动转换。这个函数在转换过程中会被保留原样,需要开发者手动处理或等待未来版本的支持。
解决方案建议
对于遇到类似问题的开发者,我们建议:
-
首先确保使用的是SQLGlot的最新版本,很多转换问题可能已经在最新版本中得到修复。
-
对于
json_size函数的转换,可以考虑以下几种方案:- 在Databricks中使用
size函数配合from_json的组合 - 使用自定义转换规则
- 等待SQLGlot未来版本的原生支持
- 在Databricks中使用
-
对于复杂的JSON处理逻辑,建议在转换后仔细验证结果,确保语义保持一致。
总结
SQL方言转换是一个复杂的过程,特别是涉及到不同数据库特有的函数和语法时。SQLGlot作为一款强大的SQL转换工具,正在不断完善对各种函数的支持。开发者在使用过程中遇到问题时,首先应该检查版本更新,其次可以考虑贡献代码来完善特定函数的转换逻辑。
对于JSON处理这种常见但实现各异的场景,理解底层数据库的具体实现差异对于确保转换结果的正确性至关重要。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00