PyTorch Lightning中如何在不同GPU上设置不同的数据采样器种子
在使用PyTorch Lightning进行分布式训练时,一个常见的问题是如何确保不同GPU/节点上的数据加载器能够采样不同的数据批次。本文将深入探讨这个问题的解决方案。
问题背景
在分布式训练场景下,如果不对数据采样器设置不同的随机种子,所有工作进程都会从主进程继承相同的随机种子,导致它们采样完全相同的数据批次。这不仅浪费计算资源,还会影响模型训练效果。
解决方案
PyTorch Lightning提供了获取当前进程rank的机制,我们可以利用它来为不同进程设置不同的随机种子。
在LightningDataModule中获取rank
在自定义的LightningDataModule类中,可以通过self.trainer属性访问训练器的各种信息,包括当前进程的本地rank:
class CustomDataModule(LightningDataModule):
def train_dataloader(self):
local_rank = self.trainer.local_rank
# 使用local_rank设置不同的随机种子
seed = 42 + local_rank
torch.manual_seed(seed)
np.random.seed(seed)
# 创建带有随机采样的数据集
return DataLoader(...)
实现原理
-
分布式训练上下文:PyTorch Lightning在启动分布式训练时,会自动为每个进程分配一个唯一的本地rank。
-
Trainer属性注入:当DataModule被Trainer使用时,Lightning会自动将Trainer实例注入到DataModule中,使我们可以访问
self.trainer。 -
种子设置:通过将基础种子(如42)与local_rank相加,我们确保了每个进程都有不同的随机种子。
最佳实践
-
种子管理:建议使用系统时间或配置参数作为基础种子,而不是硬编码。
-
可复现性:在需要复现实验时,应该记录所有进程使用的种子值。
-
数据分片:对于大型数据集,考虑结合rank信息实现数据分片,而不仅仅是随机采样。
-
验证集处理:验证集通常不需要区分不同rank,可以保持一致的采样方式。
扩展知识
在更复杂的分布式场景下,可能还需要考虑全局rank(跨节点的唯一标识)。PyTorch Lightning也提供了global_rank属性,可以通过self.trainer.global_rank访问。
通过合理利用这些分布式训练的特性,我们可以确保数据加载的高效性和训练过程的正确性,充分发挥多GPU/多节点训练的优势。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00