PyTorch Lightning中如何在不同GPU上设置不同的数据采样器种子
在使用PyTorch Lightning进行分布式训练时,一个常见的问题是如何确保不同GPU/节点上的数据加载器能够采样不同的数据批次。本文将深入探讨这个问题的解决方案。
问题背景
在分布式训练场景下,如果不对数据采样器设置不同的随机种子,所有工作进程都会从主进程继承相同的随机种子,导致它们采样完全相同的数据批次。这不仅浪费计算资源,还会影响模型训练效果。
解决方案
PyTorch Lightning提供了获取当前进程rank的机制,我们可以利用它来为不同进程设置不同的随机种子。
在LightningDataModule中获取rank
在自定义的LightningDataModule类中,可以通过self.trainer属性访问训练器的各种信息,包括当前进程的本地rank:
class CustomDataModule(LightningDataModule):
def train_dataloader(self):
local_rank = self.trainer.local_rank
# 使用local_rank设置不同的随机种子
seed = 42 + local_rank
torch.manual_seed(seed)
np.random.seed(seed)
# 创建带有随机采样的数据集
return DataLoader(...)
实现原理
-
分布式训练上下文:PyTorch Lightning在启动分布式训练时,会自动为每个进程分配一个唯一的本地rank。
-
Trainer属性注入:当DataModule被Trainer使用时,Lightning会自动将Trainer实例注入到DataModule中,使我们可以访问
self.trainer。 -
种子设置:通过将基础种子(如42)与local_rank相加,我们确保了每个进程都有不同的随机种子。
最佳实践
-
种子管理:建议使用系统时间或配置参数作为基础种子,而不是硬编码。
-
可复现性:在需要复现实验时,应该记录所有进程使用的种子值。
-
数据分片:对于大型数据集,考虑结合rank信息实现数据分片,而不仅仅是随机采样。
-
验证集处理:验证集通常不需要区分不同rank,可以保持一致的采样方式。
扩展知识
在更复杂的分布式场景下,可能还需要考虑全局rank(跨节点的唯一标识)。PyTorch Lightning也提供了global_rank属性,可以通过self.trainer.global_rank访问。
通过合理利用这些分布式训练的特性,我们可以确保数据加载的高效性和训练过程的正确性,充分发挥多GPU/多节点训练的优势。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00