OpenTelemetry-JS 与 Prometheus 集成实践指南
2025-06-27 10:01:20作者:蔡丛锟
背景介绍
在现代应用监控体系中,OpenTelemetry 和 Prometheus 是两个非常重要的工具。OpenTelemetry 提供了跨语言的观测数据收集标准,而 Prometheus 则是云原生领域广泛使用的监控系统。本文将详细介绍如何在 Node.js 应用中实现两者的无缝集成。
常见集成模式
在 OpenTelemetry-JS 项目中,开发者通常会遇到三种主要的集成模式:
-
直接暴露模式:应用直接暴露 Prometheus 格式的指标端点,由 Prometheus 直接抓取。这种模式简单直接,适合小型系统。
-
收集器中转模式:应用将指标数据推送到 OpenTelemetry 收集器,再由收集器暴露 Prometheus 格式的端点供 Prometheus 抓取。这种模式适合需要统一数据处理和转发的场景。
-
混合模式:结合前两种模式的优势,既可以直接暴露指标,也可以通过收集器进行集中处理。
典型问题分析
许多开发者在初次集成时会遇到指标端点无数据的问题,这通常是由于配置不当导致的。常见原因包括:
- 收集器配置中缺少必要的接收器(receiver)
- 应用端未正确初始化指标导出器(exporter)
- 网络连接或端口配置错误
解决方案实践
直接暴露模式实现
对于简单的应用场景,可以直接使用 PrometheusExporter:
const { PrometheusExporter } = require('@opentelemetry/exporter-prometheus');
const exporter = new PrometheusExporter({
port: 9464, // 自定义端口
});
然后在 Prometheus 配置中添加对应的抓取任务即可。
收集器中转模式实现
对于更复杂的场景,建议使用 OpenTelemetry 收集器作为中间层:
- 应用端配置:使用 OTLP 导出器将指标发送到收集器
const { OTLPMetricExporter } = require('@opentelemetry/exporter-metrics-otlp-grpc');
const exporter = new OTLPMetricExporter({
url: 'http://localhost:4317' // 收集器地址
});
- 收集器配置:需要同时配置 OTLP 接收器和 Prometheus 导出器
receivers:
otlp:
protocols:
grpc:
exporters:
prometheus:
endpoint: "0.0.0.0:8889"
service:
pipelines:
metrics:
receivers: [otlp]
exporters: [prometheus]
- Prometheus 配置:指向收集器的 Prometheus 端点
scrape_configs:
- job_name: 'otel-collector'
static_configs:
- targets: ['localhost:8889']
性能与扩展性考虑
在多应用监控场景下,直接暴露模式需要为每个应用配置不同的端口,虽然实现简单,但随着应用数量增加会带来管理复杂度。而收集器模式可以:
- 集中处理所有应用的指标数据
- 提供统一的数据处理管道(如过滤、转换)
- 减少 Prometheus 需要管理的抓取目标数量
对于生产环境,特别是需要监控多个服务的场景,推荐使用收集器作为中间层的架构。
最佳实践建议
- 开发环境可以使用直接暴露模式快速验证
- 生产环境建议采用收集器模式提高可维护性
- 注意监控组件之间的网络连通性
- 合理配置抓取间隔和超时时间
- 为不同服务添加适当的标签(label)以便区分
通过合理选择和配置这些集成模式,开发者可以构建出既灵活又强大的应用监控体系。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248