OpenTelemetry-JS 与 Prometheus 集成实践指南
2025-06-27 20:49:29作者:蔡丛锟
背景介绍
在现代应用监控体系中,OpenTelemetry 和 Prometheus 是两个非常重要的工具。OpenTelemetry 提供了跨语言的观测数据收集标准,而 Prometheus 则是云原生领域广泛使用的监控系统。本文将详细介绍如何在 Node.js 应用中实现两者的无缝集成。
常见集成模式
在 OpenTelemetry-JS 项目中,开发者通常会遇到三种主要的集成模式:
-
直接暴露模式:应用直接暴露 Prometheus 格式的指标端点,由 Prometheus 直接抓取。这种模式简单直接,适合小型系统。
-
收集器中转模式:应用将指标数据推送到 OpenTelemetry 收集器,再由收集器暴露 Prometheus 格式的端点供 Prometheus 抓取。这种模式适合需要统一数据处理和转发的场景。
-
混合模式:结合前两种模式的优势,既可以直接暴露指标,也可以通过收集器进行集中处理。
典型问题分析
许多开发者在初次集成时会遇到指标端点无数据的问题,这通常是由于配置不当导致的。常见原因包括:
- 收集器配置中缺少必要的接收器(receiver)
- 应用端未正确初始化指标导出器(exporter)
- 网络连接或端口配置错误
解决方案实践
直接暴露模式实现
对于简单的应用场景,可以直接使用 PrometheusExporter:
const { PrometheusExporter } = require('@opentelemetry/exporter-prometheus');
const exporter = new PrometheusExporter({
port: 9464, // 自定义端口
});
然后在 Prometheus 配置中添加对应的抓取任务即可。
收集器中转模式实现
对于更复杂的场景,建议使用 OpenTelemetry 收集器作为中间层:
- 应用端配置:使用 OTLP 导出器将指标发送到收集器
const { OTLPMetricExporter } = require('@opentelemetry/exporter-metrics-otlp-grpc');
const exporter = new OTLPMetricExporter({
url: 'http://localhost:4317' // 收集器地址
});
- 收集器配置:需要同时配置 OTLP 接收器和 Prometheus 导出器
receivers:
otlp:
protocols:
grpc:
exporters:
prometheus:
endpoint: "0.0.0.0:8889"
service:
pipelines:
metrics:
receivers: [otlp]
exporters: [prometheus]
- Prometheus 配置:指向收集器的 Prometheus 端点
scrape_configs:
- job_name: 'otel-collector'
static_configs:
- targets: ['localhost:8889']
性能与扩展性考虑
在多应用监控场景下,直接暴露模式需要为每个应用配置不同的端口,虽然实现简单,但随着应用数量增加会带来管理复杂度。而收集器模式可以:
- 集中处理所有应用的指标数据
- 提供统一的数据处理管道(如过滤、转换)
- 减少 Prometheus 需要管理的抓取目标数量
对于生产环境,特别是需要监控多个服务的场景,推荐使用收集器作为中间层的架构。
最佳实践建议
- 开发环境可以使用直接暴露模式快速验证
- 生产环境建议采用收集器模式提高可维护性
- 注意监控组件之间的网络连通性
- 合理配置抓取间隔和超时时间
- 为不同服务添加适当的标签(label)以便区分
通过合理选择和配置这些集成模式,开发者可以构建出既灵活又强大的应用监控体系。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137