OpenTelemetry-JS 与 Prometheus 集成实践指南
2025-06-27 17:22:25作者:蔡丛锟
背景介绍
在现代应用监控体系中,OpenTelemetry 和 Prometheus 是两个非常重要的工具。OpenTelemetry 提供了跨语言的观测数据收集标准,而 Prometheus 则是云原生领域广泛使用的监控系统。本文将详细介绍如何在 Node.js 应用中实现两者的无缝集成。
常见集成模式
在 OpenTelemetry-JS 项目中,开发者通常会遇到三种主要的集成模式:
-
直接暴露模式:应用直接暴露 Prometheus 格式的指标端点,由 Prometheus 直接抓取。这种模式简单直接,适合小型系统。
-
收集器中转模式:应用将指标数据推送到 OpenTelemetry 收集器,再由收集器暴露 Prometheus 格式的端点供 Prometheus 抓取。这种模式适合需要统一数据处理和转发的场景。
-
混合模式:结合前两种模式的优势,既可以直接暴露指标,也可以通过收集器进行集中处理。
典型问题分析
许多开发者在初次集成时会遇到指标端点无数据的问题,这通常是由于配置不当导致的。常见原因包括:
- 收集器配置中缺少必要的接收器(receiver)
- 应用端未正确初始化指标导出器(exporter)
- 网络连接或端口配置错误
解决方案实践
直接暴露模式实现
对于简单的应用场景,可以直接使用 PrometheusExporter:
const { PrometheusExporter } = require('@opentelemetry/exporter-prometheus');
const exporter = new PrometheusExporter({
port: 9464, // 自定义端口
});
然后在 Prometheus 配置中添加对应的抓取任务即可。
收集器中转模式实现
对于更复杂的场景,建议使用 OpenTelemetry 收集器作为中间层:
- 应用端配置:使用 OTLP 导出器将指标发送到收集器
const { OTLPMetricExporter } = require('@opentelemetry/exporter-metrics-otlp-grpc');
const exporter = new OTLPMetricExporter({
url: 'http://localhost:4317' // 收集器地址
});
- 收集器配置:需要同时配置 OTLP 接收器和 Prometheus 导出器
receivers:
otlp:
protocols:
grpc:
exporters:
prometheus:
endpoint: "0.0.0.0:8889"
service:
pipelines:
metrics:
receivers: [otlp]
exporters: [prometheus]
- Prometheus 配置:指向收集器的 Prometheus 端点
scrape_configs:
- job_name: 'otel-collector'
static_configs:
- targets: ['localhost:8889']
性能与扩展性考虑
在多应用监控场景下,直接暴露模式需要为每个应用配置不同的端口,虽然实现简单,但随着应用数量增加会带来管理复杂度。而收集器模式可以:
- 集中处理所有应用的指标数据
- 提供统一的数据处理管道(如过滤、转换)
- 减少 Prometheus 需要管理的抓取目标数量
对于生产环境,特别是需要监控多个服务的场景,推荐使用收集器作为中间层的架构。
最佳实践建议
- 开发环境可以使用直接暴露模式快速验证
- 生产环境建议采用收集器模式提高可维护性
- 注意监控组件之间的网络连通性
- 合理配置抓取间隔和超时时间
- 为不同服务添加适当的标签(label)以便区分
通过合理选择和配置这些集成模式,开发者可以构建出既灵活又强大的应用监控体系。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193