Minimind项目中的超长文本处理与Tokenizer训练优化
2025-05-11 03:19:44作者:丁柯新Fawn
超长pretrain数据的分批处理方案
在自然语言处理项目中,处理大规模预训练数据时经常会遇到内存不足的问题。当数据量特别大时,传统的将全部数据一次性加载到内存的方法会导致程序被系统强制终止(显示为"killed")。针对Minimind项目中的这一挑战,我们提出了一种高效的分批处理方案。
核心解决思路
该方案采用分批处理策略,将大规模数据分割为多个小批次进行处理,每个批次处理完成后立即写入磁盘,从而显著降低内存占用。具体实现包含以下几个关键点:
- 批次处理机制:设置合理的batch_size(如10000),当内存中的token数量达到阈值时,将当前批次数据写入二进制文件
- 内存管理优化:使用numpy数组存储token ID,并采用uint16数据类型以节省内存空间
- 文本截断策略:对于超过512字符的文本,智能地截取到最后一个完整句子结束的位置
- 异常处理机制:捕获并跳过无效数据行,确保处理流程不会因个别数据问题而中断
- 进度监控:定期输出处理进度,便于监控大规模数据处理的状态
实现细节
该方案通过维护一个内存中的批次缓冲区,当缓冲区达到预设大小时,将数据转换为numpy数组并追加写入二进制文件。这种方法不仅解决了内存不足的问题,还保持了数据处理的高效性。对于文本截断,特别设计了寻找最后一个句号的策略,确保截断后的文本保持语义完整性。
超长文本Tokenizer训练的内存优化
在训练自定义tokenizer时,处理超长文本同样会遇到内存挑战。当输入文本过长或数据量过大时,tokenizer训练过程可能会因内存不足而被终止。
常见问题分析
Tokenizer训练过程中的内存消耗主要来自以下几个方面:
- 原始文本数据的加载和存储
- 训练过程中的中间结果缓存
- 词汇表构建时的统计信息存储
- 特殊token的处理开销
优化建议
针对这些问题,可以考虑以下优化策略:
- 流式处理:采用类似分批处理的方法,将训练数据分割为多个小文件逐步处理
- 内存映射:使用内存映射技术处理大文件,避免一次性加载全部数据
- 配置调整:适当降低vocab_size或调整其他训练参数以减少内存需求
- 硬件优化:增加可用内存或使用具有更大内存的机器进行训练
- 预处理过滤:提前过滤掉异常长的文本或将其分割为合理长度的片段
总结
处理大规模文本数据和训练tokenizer时的内存管理是NLP项目中的常见挑战。通过分批处理、智能截断和内存优化等技术,可以有效解决这些问题。Minimind项目中的实践经验表明,合理的数据处理策略不仅能避免内存不足导致的程序终止,还能提高整体处理效率。对于tokenizer训练,建议结合具体实现框架的特性,选择最适合的内存优化方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
264
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118