Minimind项目中的超长文本处理与Tokenizer训练优化
2025-05-11 06:27:47作者:丁柯新Fawn
超长pretrain数据的分批处理方案
在自然语言处理项目中,处理大规模预训练数据时经常会遇到内存不足的问题。当数据量特别大时,传统的将全部数据一次性加载到内存的方法会导致程序被系统强制终止(显示为"killed")。针对Minimind项目中的这一挑战,我们提出了一种高效的分批处理方案。
核心解决思路
该方案采用分批处理策略,将大规模数据分割为多个小批次进行处理,每个批次处理完成后立即写入磁盘,从而显著降低内存占用。具体实现包含以下几个关键点:
- 批次处理机制:设置合理的batch_size(如10000),当内存中的token数量达到阈值时,将当前批次数据写入二进制文件
- 内存管理优化:使用numpy数组存储token ID,并采用uint16数据类型以节省内存空间
- 文本截断策略:对于超过512字符的文本,智能地截取到最后一个完整句子结束的位置
- 异常处理机制:捕获并跳过无效数据行,确保处理流程不会因个别数据问题而中断
- 进度监控:定期输出处理进度,便于监控大规模数据处理的状态
实现细节
该方案通过维护一个内存中的批次缓冲区,当缓冲区达到预设大小时,将数据转换为numpy数组并追加写入二进制文件。这种方法不仅解决了内存不足的问题,还保持了数据处理的高效性。对于文本截断,特别设计了寻找最后一个句号的策略,确保截断后的文本保持语义完整性。
超长文本Tokenizer训练的内存优化
在训练自定义tokenizer时,处理超长文本同样会遇到内存挑战。当输入文本过长或数据量过大时,tokenizer训练过程可能会因内存不足而被终止。
常见问题分析
Tokenizer训练过程中的内存消耗主要来自以下几个方面:
- 原始文本数据的加载和存储
- 训练过程中的中间结果缓存
- 词汇表构建时的统计信息存储
- 特殊token的处理开销
优化建议
针对这些问题,可以考虑以下优化策略:
- 流式处理:采用类似分批处理的方法,将训练数据分割为多个小文件逐步处理
- 内存映射:使用内存映射技术处理大文件,避免一次性加载全部数据
- 配置调整:适当降低vocab_size或调整其他训练参数以减少内存需求
- 硬件优化:增加可用内存或使用具有更大内存的机器进行训练
- 预处理过滤:提前过滤掉异常长的文本或将其分割为合理长度的片段
总结
处理大规模文本数据和训练tokenizer时的内存管理是NLP项目中的常见挑战。通过分批处理、智能截断和内存优化等技术,可以有效解决这些问题。Minimind项目中的实践经验表明,合理的数据处理策略不仅能避免内存不足导致的程序终止,还能提高整体处理效率。对于tokenizer训练,建议结合具体实现框架的特性,选择最适合的内存优化方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1