Minimind项目中的超长文本处理与Tokenizer训练优化
2025-05-11 06:17:36作者:丁柯新Fawn
超长pretrain数据的分批处理方案
在自然语言处理项目中,处理大规模预训练数据时经常会遇到内存不足的问题。当数据量特别大时,传统的将全部数据一次性加载到内存的方法会导致程序被系统强制终止(显示为"killed")。针对Minimind项目中的这一挑战,我们提出了一种高效的分批处理方案。
核心解决思路
该方案采用分批处理策略,将大规模数据分割为多个小批次进行处理,每个批次处理完成后立即写入磁盘,从而显著降低内存占用。具体实现包含以下几个关键点:
- 批次处理机制:设置合理的batch_size(如10000),当内存中的token数量达到阈值时,将当前批次数据写入二进制文件
- 内存管理优化:使用numpy数组存储token ID,并采用uint16数据类型以节省内存空间
- 文本截断策略:对于超过512字符的文本,智能地截取到最后一个完整句子结束的位置
- 异常处理机制:捕获并跳过无效数据行,确保处理流程不会因个别数据问题而中断
- 进度监控:定期输出处理进度,便于监控大规模数据处理的状态
实现细节
该方案通过维护一个内存中的批次缓冲区,当缓冲区达到预设大小时,将数据转换为numpy数组并追加写入二进制文件。这种方法不仅解决了内存不足的问题,还保持了数据处理的高效性。对于文本截断,特别设计了寻找最后一个句号的策略,确保截断后的文本保持语义完整性。
超长文本Tokenizer训练的内存优化
在训练自定义tokenizer时,处理超长文本同样会遇到内存挑战。当输入文本过长或数据量过大时,tokenizer训练过程可能会因内存不足而被终止。
常见问题分析
Tokenizer训练过程中的内存消耗主要来自以下几个方面:
- 原始文本数据的加载和存储
- 训练过程中的中间结果缓存
- 词汇表构建时的统计信息存储
- 特殊token的处理开销
优化建议
针对这些问题,可以考虑以下优化策略:
- 流式处理:采用类似分批处理的方法,将训练数据分割为多个小文件逐步处理
- 内存映射:使用内存映射技术处理大文件,避免一次性加载全部数据
- 配置调整:适当降低vocab_size或调整其他训练参数以减少内存需求
- 硬件优化:增加可用内存或使用具有更大内存的机器进行训练
- 预处理过滤:提前过滤掉异常长的文本或将其分割为合理长度的片段
总结
处理大规模文本数据和训练tokenizer时的内存管理是NLP项目中的常见挑战。通过分批处理、智能截断和内存优化等技术,可以有效解决这些问题。Minimind项目中的实践经验表明,合理的数据处理策略不仅能避免内存不足导致的程序终止,还能提高整体处理效率。对于tokenizer训练,建议结合具体实现框架的特性,选择最适合的内存优化方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
197
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
624
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210