Elastic Detection Rules项目:MITRE ATT&CK导航器平台过滤功能解析
背景介绍
在网络安全领域,MITRE ATT&CK框架作为威胁行为建模的重要工具,被广泛应用于安全检测规则的开发和管理。Elastic Detection Rules项目作为Elastic安全解决方案的核心组件,提供了与MITRE ATT&CK导航器的集成功能,使安全团队能够直观地查看和过滤检测规则。
当前功能分析
目前,Elastic Detection Rules项目中的MITRE ATT&CK导航器支持基于预定义平台列表的过滤功能。这些平台包括:
- Azure AD
- Containers
- Google Workspace
- IaaS
- Linux
- macOS
- Network
- Office 365
- PRE
- SaaS
- Windows
这些平台类型直接映射到MITRE ATT&CK企业矩阵中定义的标准平台分类。这种设计确保了与官方MITRE框架的一致性,但也限制了用户对特定云服务或SaaS应用(如OKTA、AWS等)的专门过滤需求。
技术实现原理
在底层实现上,项目通过navigator.py文件中的_DEFAULT_PLATFORMS列表定义了支持的平台类型。当生成导航器文件时,系统会根据这些平台类型对检测规则进行分类和组织。
值得注意的是,MITRE ATT&CK导航器本身并不支持动态添加新的平台类型。这意味着即使我们在代码中添加新的平台(如OKTA),这些新增平台也不会出现在官方导航器的平台过滤选项中。
替代解决方案
虽然无法直接在官方导航器中添加新的平台过滤器,但项目提供了以下替代方案:
-
基于标签的专用导航器文件:
- 系统会为每个特定标签(如okta)生成专用的JSON文件
- 这些文件包含了只与该标签相关的检测规则
-
使用本地导航器工具:
- 用户可以下载专用的标签JSON文件
- 通过MITRE ATT&CK导航器的本地版本加载这些文件
- 实现特定于该标签的规则视图
最佳实践建议
对于需要查看特定平台(如OKTA)检测规则的用户,建议采用以下工作流程:
- 访问MITRE ATT&CK导航器在线工具
- 选择"Open Existing Layer"选项
- 加载对应的专用JSON文件(可通过项目GIST获取)
- 系统将自动显示与该平台相关的所有检测规则
对于SaaS类平台,用户也可以考虑使用现有的"SaaS"平台过滤器作为临时解决方案,虽然这会包含更广泛的规则范围。
未来展望
虽然当前受限于MITRE官方平台定义,但项目团队可以考虑以下增强方向:
- 开发自定义的导航器视图生成工具
- 提供更细粒度的平台子分类支持
- 实现基于多维度(平台+标签)的复合过滤功能
这些改进将进一步提升安全团队在复杂多云环境中的规则管理效率。
通过本文的分析,我们希望帮助Elastic安全用户更好地理解和使用MITRE ATT&CK导航器功能,特别是在特定平台检测规则查看方面的最佳实践。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00