首页
/ KT-Speech-Crawler 使用指南

KT-Speech-Crawler 使用指南

2024-09-12 15:49:52作者:明树来

项目介绍

KT-Speech-Crawler 是一个用于自动构建语音识别数据集的工具,它通过爬取YouTube视频来搜集多样化的音频样本。该工具由Egor Lakomkin、Sven Magg、Cornelius Weber 和 Stefan Wermter开发,并在EMNLP 2018会议上展示了其系统演示。KT-Speech-Crawler设计了一套过滤和后处理步骤,以提取适合训练端到端神经网络语音识别系统的音频样本。这些收集的样本包含读物和自发演讲,涵盖了各种录音环境,如背景噪音、音乐、远距离麦克风录音以及不同的口音和混响情况。

项目快速启动

环境准备

首先,确保你的工作环境安装了Python及其必要的依赖。接下来,执行以下步骤:

# 克隆项目仓库
git clone https://github.com/EgorLakomkin/KTSpeechCrawler.git

# 安装项目依赖
cd KTSpeechCrawler
pip install -r requirements.txt

运行爬虫

为了运行爬虫,你需要给予相应的脚本执行权限,并指定中间结果及最终样本存储的目录:

chmod a+x ./crawler/en_corpus.sh
./crawler/en_corpus.sh <中间结果目录> <最终样本存放目录>

预览样本

收集完样本后,你可以通过启动内置的简单服务器浏览样本:

python server.py --corpus <最终样本存放目录>

然后访问 http://localhost:8888/ 来预览下载的语音样本。

应用案例和最佳实践

KT-Speech-Crawler可以极大地加速语音识别模型的训练数据准备工作。最佳实践包括:

  • 数据多样性提升:将其作为数据增强策略,结合现有的专业标注数据集,增加模型对不同环境声音的理解能力。
  • 持续数据更新:定期运行爬虫以获取最新的语言趋势和多样化的口音,使模型保持时效性。
  • 质量控制:虽然该工具自带基本的过滤机制,用户应进一步评估并清理数据,确保训练数据的质量。

典型生态项目

尽管KT-Speech-Crawler本身专注于数据集的自动生成,其可以与多种语音处理和机器学习框架相结合,例如TensorFlow或PyTorch,用于构建和训练自定义的语音识别系统。在语音识别研究和产品开发领域,它可以成为初始化或扩展现有数据集的重要工具,进而推动各类语音应用如智能助手、自动字幕生成等的发展。


通过遵循上述指南,开发者能够有效利用KT-Speech-Crawler进行大规模、多样化的语音数据集建设,为自己的语音识别项目打下坚实的基础。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509