PaddleOCR中vi-LayoutXLM模型ONNX推理输入初始化问题解析
问题背景
在使用PaddleOCR项目进行关键信息抽取(KIE)任务时,研究人员发现当尝试使用ONNX格式的vi-LayoutXLM模型进行序列实体识别(SER)预测时,会出现输入初始化错误。这个问题主要发生在启用--use_onnx
参数运行predict_kie_token_ser.py
脚本时。
问题现象
当执行ONNX推理时,系统会抛出以下错误:
TypeError: object of type 'onnxruntime.capi.onnxruntime_pybind11_state.NodeArg' has no len()
这个错误表明程序在尝试获取输入张量的长度时遇到了类型不匹配的问题。
根本原因分析
经过深入代码审查,发现问题根源在于tools/infer/utillity.py
文件中的输入初始化逻辑。具体来说,第224行的代码:
return sess, sess.get_inputs()[0], None, None
这段代码假设模型只有一个输入节点,因此直接获取输入列表的第一个元素。然而,vi-LayoutXLM模型实际上需要4个输入节点,这种简化的处理方式导致了后续操作失败。
技术细节
vi-LayoutXLM作为一种多模态预训练模型,其输入结构比传统的检测或识别模型更为复杂。典型的vi-LayoutXLM模型需要以下输入:
- 图像特征输入
- 文本特征输入
- 位置信息输入
- 其他辅助信息输入
这种多输入结构是视觉-语言联合模型的典型特征,能够同时处理视觉和文本信息。
解决方案
要解决这个问题,需要从以下几个方面进行修改:
-
输入初始化逻辑修改: 需要正确处理ONNX模型的多个输入节点,而不是仅获取第一个输入。
-
推理代码适配: 在
predict_kie_token_ser.py
中,需要相应调整输入处理逻辑,确保为模型提供所有必需的输入。 -
输入预处理: 确保在将数据送入ONNX模型前,所有输入都经过正确的预处理和格式转换。
实施建议
对于开发者而言,在将PaddlePaddle模型转换为ONNX格式并用于推理时,应当:
- 仔细检查模型的输入输出结构
- 确保推理代码与模型结构相匹配
- 对多输入模型进行特殊处理
- 在转换和推理过程中添加充分的验证步骤
总结
这个问题揭示了在使用复杂模型进行格式转换和跨平台推理时的常见挑战。特别是对于多模态、多输入的先进模型,开发者需要特别注意模型结构的完整性和推理流程的适配性。通过正确理解模型结构和仔细处理输入输出,可以确保模型在不同格式和平台上的稳定运行。
对于PaddleOCR用户而言,了解这一问题的本质有助于更好地使用vi-LayoutXLM等先进模型进行文档理解和关键信息抽取任务。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









