首页
/ Ragas项目中LLMContextPrecisionWithoutReference指标的正确使用方式

Ragas项目中LLMContextPrecisionWithoutReference指标的正确使用方式

2025-05-26 02:20:42作者:裘晴惠Vivianne

Ragas是一个用于评估检索增强生成(RAG)系统性能的开源框架。在最新版本中,其上下文精确度(Contex Precision)指标的实现存在一个需要开发者注意的重要细节。

问题背景

在Ragas 0.2.2版本中,LLMContextPrecisionWithoutReference类虽然被设计为不需要参考答案(reference answer)就能计算上下文精确度,但在实际实现中仍然尝试访问样本中的reference字段。这导致当开发者按照文档说明创建不包含reference的SingleTurnSample时,会抛出KeyError异常。

技术细节分析

上下文精确度是评估RAG系统的一个重要指标,它衡量系统检索到的上下文信息与生成答案的相关性。Ragas提供了两种实现:

  1. 需要参考答案的标准版本
  2. 不需要参考答案的LLMContextPrecisionWithoutReference版本

后者本应通过直接分析问题和检索到的上下文来评估精确度,而不依赖人工提供的标准答案,这使得评估过程更加自动化。

解决方案

开发团队已在0.2.3版本中修复了这个问题。现在LLMContextPrecisionWithoutReference类可以正确工作,不再要求样本中包含reference字段。

最佳实践建议

对于使用Ragas评估RAG系统的开发者,建议:

  1. 确保使用最新版本(0.2.3或更高)
  2. 当不需要人工标注的参考答案时,可以放心使用LLMContextPrecisionWithoutReference
  3. 创建样本时,只需提供user_input、response和retrieved_contexts三个字段

示例代码:

from ragas import SingleTurnSample
from ragas.metrics import LLMContextPrecisionWithoutReference

context_precision = LLMContextPrecisionWithoutReference()

sample = SingleTurnSample(
    user_input="问题内容",
    response="系统生成的回答",
    retrieved_contexts=["检索到的上下文1", "检索到的上下文2"]
)

score = context_precision.single_turn_score(sample)

总结

Ragas框架持续改进其评估指标的实现,开发者应及时更新版本以获得最佳体验。LLMContextPrecisionWithoutReference指标的无参考评估能力使RAG系统的自动化评估更加便捷,是评估流程中值得采用的工具。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K