Ragas项目中LLMContextPrecisionWithoutReference指标的正确使用方式
2025-05-26 02:20:42作者:裘晴惠Vivianne
Ragas是一个用于评估检索增强生成(RAG)系统性能的开源框架。在最新版本中,其上下文精确度(Contex Precision)指标的实现存在一个需要开发者注意的重要细节。
问题背景
在Ragas 0.2.2版本中,LLMContextPrecisionWithoutReference类虽然被设计为不需要参考答案(reference answer)就能计算上下文精确度,但在实际实现中仍然尝试访问样本中的reference字段。这导致当开发者按照文档说明创建不包含reference的SingleTurnSample时,会抛出KeyError异常。
技术细节分析
上下文精确度是评估RAG系统的一个重要指标,它衡量系统检索到的上下文信息与生成答案的相关性。Ragas提供了两种实现:
- 需要参考答案的标准版本
- 不需要参考答案的LLMContextPrecisionWithoutReference版本
后者本应通过直接分析问题和检索到的上下文来评估精确度,而不依赖人工提供的标准答案,这使得评估过程更加自动化。
解决方案
开发团队已在0.2.3版本中修复了这个问题。现在LLMContextPrecisionWithoutReference类可以正确工作,不再要求样本中包含reference字段。
最佳实践建议
对于使用Ragas评估RAG系统的开发者,建议:
- 确保使用最新版本(0.2.3或更高)
- 当不需要人工标注的参考答案时,可以放心使用LLMContextPrecisionWithoutReference
- 创建样本时,只需提供user_input、response和retrieved_contexts三个字段
示例代码:
from ragas import SingleTurnSample
from ragas.metrics import LLMContextPrecisionWithoutReference
context_precision = LLMContextPrecisionWithoutReference()
sample = SingleTurnSample(
user_input="问题内容",
response="系统生成的回答",
retrieved_contexts=["检索到的上下文1", "检索到的上下文2"]
)
score = context_precision.single_turn_score(sample)
总结
Ragas框架持续改进其评估指标的实现,开发者应及时更新版本以获得最佳体验。LLMContextPrecisionWithoutReference指标的无参考评估能力使RAG系统的自动化评估更加便捷,是评估流程中值得采用的工具。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K