Ragas项目中LLMContextPrecisionWithoutReference指标的正确使用方式
2025-05-26 17:19:10作者:裘晴惠Vivianne
Ragas是一个用于评估检索增强生成(RAG)系统性能的开源框架。在最新版本中,其上下文精确度(Contex Precision)指标的实现存在一个需要开发者注意的重要细节。
问题背景
在Ragas 0.2.2版本中,LLMContextPrecisionWithoutReference类虽然被设计为不需要参考答案(reference answer)就能计算上下文精确度,但在实际实现中仍然尝试访问样本中的reference字段。这导致当开发者按照文档说明创建不包含reference的SingleTurnSample时,会抛出KeyError异常。
技术细节分析
上下文精确度是评估RAG系统的一个重要指标,它衡量系统检索到的上下文信息与生成答案的相关性。Ragas提供了两种实现:
- 需要参考答案的标准版本
- 不需要参考答案的LLMContextPrecisionWithoutReference版本
后者本应通过直接分析问题和检索到的上下文来评估精确度,而不依赖人工提供的标准答案,这使得评估过程更加自动化。
解决方案
开发团队已在0.2.3版本中修复了这个问题。现在LLMContextPrecisionWithoutReference类可以正确工作,不再要求样本中包含reference字段。
最佳实践建议
对于使用Ragas评估RAG系统的开发者,建议:
- 确保使用最新版本(0.2.3或更高)
- 当不需要人工标注的参考答案时,可以放心使用LLMContextPrecisionWithoutReference
- 创建样本时,只需提供user_input、response和retrieved_contexts三个字段
示例代码:
from ragas import SingleTurnSample
from ragas.metrics import LLMContextPrecisionWithoutReference
context_precision = LLMContextPrecisionWithoutReference()
sample = SingleTurnSample(
user_input="问题内容",
response="系统生成的回答",
retrieved_contexts=["检索到的上下文1", "检索到的上下文2"]
)
score = context_precision.single_turn_score(sample)
总结
Ragas框架持续改进其评估指标的实现,开发者应及时更新版本以获得最佳体验。LLMContextPrecisionWithoutReference指标的无参考评估能力使RAG系统的自动化评估更加便捷,是评估流程中值得采用的工具。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355