Apache Beam 2.63.0 版本发布:流批一体数据处理框架的重大更新
Apache Beam 是一个开源的统一编程模型,用于批处理和流式数据处理任务。它提供了一个简单而强大的API,允许开发者编写可以在各种执行引擎(如Apache Flink、Apache Spark、Google Cloud Dataflow等)上运行的数据处理管道。Beam 的核心优势在于其"一次编写,随处运行"的理念,使得数据处理逻辑可以跨平台执行。
版本亮点
Apache Beam 2.63.0 版本带来了多项重要更新和改进,涵盖了I/O连接器、新功能、性能优化和错误修复等方面。这个版本特别强调了跨语言支持、云存储集成和实时处理能力的增强。
核心改进
存储与I/O增强
在存储和I/O方面,2.63.0版本有几个显著改进:
-
GCS连接器升级:支持了gcs-connector 3.x+版本,增强了与Google Cloud Storage的集成能力。同时增加了对GCS路径的递归删除支持,并改进了批处理方法的重试逻辑。
-
BigQuery优化:新增了
--groupFilesFileLoad管道选项,解决了在某些运行器(包括Dataflow Runner V2)上使用BigQueryIO批处理FILE_LOAD时的side-input相关问题。同时修复了Storage Write API有时无法自动更新模式的问题。 -
文本处理修复:解决了Python版TextIO在读取gzip压缩文件时可能出现的数据丢失问题,这个长期存在的问题终于得到了解决。
机器学习与向量处理
2.63.0版本在机器学习支持方面迈出了重要一步:
- 新增了BigQuery向量/嵌入(embedding)的摄取和丰富组件到
apache_beam.ml.rag模块中。这使得Beam能够更好地支持现代机器学习工作流,特别是检索增强生成(RAG)应用场景。
运行时与执行环境
在运行时和执行环境方面,这个版本带来了多项改进:
-
Go SDK增强:Go SDK容器现在支持基于进程的外部工作池,用于支持某些运行器的sidecar容器运行SDK工作器。同时支持了进程执行环境,并提高了最低Go版本要求到1.22.10。
-
Prism运行器:作为Beam的参考实现,Prism运行器在这个版本中获得了多项重要更新:
- 简化了端口使用,现在使用单一端口进行管道提交和工作执行
- 增加了对@RequiresTimeSortedInputs的支持
- 初步实现了AllowedLateness功能
- 改进了会话窗口聚合,确保按键执行
- 支持非回环模式环境类型和进程执行环境
- 新增AnyOf环境支持,改进了跨语言管道开发体验
-
DaskRunner优化:Python SDK中的DaskRunner现在支持可配置的分区,提供了更大的灵活性。
性能优化
2.63.0版本包含了几项重要的性能优化:
-
在Dataflow流式处理中,默认启用了Windmill GetWork响应批处理,允许后端在单个响应proto中发送多个工作项,提高了通信效率。
-
修复了Dataflow流式工作器将谱系(lineage)指标报告为累积值而非增量值的问题,确保了指标准确性。
技术升级与兼容性
这个版本进行了几项重要的技术升级:
-
Protobuf升级:Java部分升级到了protobuf 4,这是一个重大变化。不过由于Debezium客户端不兼容protobuf 4,Debezium IO被迫继续使用protobuf 3,这可能导致某些仅兼容protobuf 4的客户端出现冲突。
-
AWS V1 I/O移除:Java中的AWS V1 I/O已被移除,Python Kinesis I/O也相应更新为使用V2 IO,同时不再支持设置producer_properties。
错误修复
除了上述改进外,2.63.0版本还修复了多个重要问题:
- 解决了Dataflow流式设备在键输出超过180MB结果时提交失败的问题(KeyCommitTooLargeException)
- 修复了Dataflow模板创建时忽略模板文件创建错误的问题
- 更正了可移植性协议中的Pane编码文档
- 更新了用户邮件列表地址
总结
Apache Beam 2.63.0版本在数据处理能力、云集成、机器学习支持和运行时性能等方面都带来了显著改进。特别是对向量处理的支持、GCS集成的增强以及Prism运行器的完善,使得Beam在现代数据处理场景中更具竞争力。虽然包含了一些破坏性变更,但这些变化为框架的长期发展奠定了基础。对于现有用户,建议仔细评估兼容性影响后再进行升级;对于新用户,这个版本提供了更强大、更稳定的功能集来构建数据处理应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00