OpenBLAS在ARM架构下的线程亲和性构建问题解析
问题背景
在ARMv8架构的Ubuntu 20.04系统上构建OpenBLAS 0.3.7版本时,开发者遇到了一个关于线程亲和性的构建错误。错误信息显示在链接阶段出现了对'WhereAmI'函数的未定义引用,导致构建过程失败。这个问题特别出现在设置了NO_AFFINITY=0(即启用线程亲和性)的配置下。
技术分析
核心问题
在OpenBLAS的初始化代码中,有两个关键函数gotoblas_set_affinity
和get_node
需要调用WhereAmI
函数来获取当前CPU核心的标识信息。这个函数在ARM64架构的实现中缺失,导致了链接错误。
深层原因
线程亲和性是高性能计算中的重要特性,它允许将特定线程绑定到特定的CPU核心上,以减少线程迁移带来的性能开销。在ARM架构下,获取当前核心ID通常需要通过读取MPIDR_EL1系统寄存器来实现,这与x86架构下的实现方式有显著不同。
解决方案
临时解决方案
对于必须使用旧版本OpenBLAS的用户,可以手动实现WhereAmI
函数。以下是两种可行的实现方式:
- 直接读取MPIDR_EL1寄存器:
static inline int WhereAmI(void){
uint64_t ret;
__asm__ volatile (
"mrs x0, mpidr_el1\n"
"and x0, x0, 0xff\n"
:"=r" (ret)
:: "memory");
if (ret > MAX_CPU_NUMBER) ret = MAX_CPU_NUMBER;
return (int)ret;
}
- 使用glibc的系统调用(适用于较新的Linux系统):
static inline int WhereAmI(void){
return (sched_getcpu());
}
长期建议
-
升级OpenBLAS版本:新版本已经修复了这个问题,并提供了更好的ARM架构支持。
-
重新评估亲和性设置:在使用OpenMP的情况下,通常不需要额外设置线程亲和性,因为OpenMP运行时已经包含了完善的亲和性管理机制。
-
性能考量:对于科学计算应用,应注意不同版本的BLAS实现可能在数值结果上存在微小差异,这是正常现象。
技术延伸
在ARM架构下处理线程亲和性时,开发者需要注意:
-
ARM处理器的核心ID获取方式与x86不同,需要通过特定系统寄存器访问。
-
在多NUMA节点的ARM系统中,核心ID的解析更为复杂,需要考虑节点拓扑信息。
-
现代Linux系统提供了
sched_getcpu()
等系统调用,可以简化核心ID的获取过程。
这个问题展示了在跨架构移植高性能计算库时可能遇到的典型挑战,特别是在处理硬件特定功能时需要特别注意架构差异。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









