探索未来智能检测:Object Centric Open Vocabulary Detection(NeurIPS 2022)
2024-05-23 23:53:49作者:魏侃纯Zoe
在这个数字化时代,人工智能已经在图像识别和检测领域取得了显著的进步,而Object Centric Open Vocabulary Detection则是这一领域的最新突破。这个开源项目源自一篇在NeurIPS 2022大会上被接受的论文,旨在将对象级和图像级表示之间的差距最小化,以实现更精确的开放词汇检测。
项目介绍
Object Centric Open Vocabulary Detection(OCD)项目提供了一种创新的方法来处理开放词汇物体检测问题。它通过优化CLIP模型的语言嵌入并利用弱图像级监督,实现了对新类别物体的精准定位。这项工作特别关注如何从图像文本对训练的CLIP模型中提取出更为准确的对象信息,并结合仅使用图像级别监督的数据,创造出高质量的伪标签,以扩大训练时的词汇库。
项目技术分析
- Region-based Knowledge Distillation (RKD):将图像级别的语言表示转化为更加聚焦于对象的表示,从而提高定位准确性。
- Pseudo Image-level Supervision (PIS):利用预训练的多模态ViTs产生的弱监督信息,改进了模型对新类别的泛化能力。
- Weight Transfer function:巧妙地结合上述两种策略的优势,有效融合了RKD和PIS的互补性能。
应用场景
OCD项目的技术有广泛的应用前景,特别是在物联网、自动驾驶、安防监控和智能机器人等领域。其能力在于能识别未见过的新类别物体,这对于实时环境中的智能系统来说至关重要。例如,在自动驾驶汽车中,能够即时识别道路标志或异常物体,可以极大地提升行车安全性。
项目特点
- 高度创新: 结合对象级和图像级表示,解决了传统方法在这两者之间存在的不匹配问题。
- 强大性能: 在COCO和LVIS基准测试上取得领先的性能,对于新类别物体的检测准确率显著提升。
- 易于使用: 提供交互式的Colab演示,让用户能够快速创建自己的定制化检测器。
- 全面支持: 提供详细的安装指南和预训练模型,方便研究人员和开发者进行实验和拓展。
这个项目不仅展示了深度学习在图像检测上的潜力,也为未来的开放词汇检测研究提供了新的方向。无论你是研究人员还是开发者,Object Centric Open Vocabulary Detection都是值得探索和采用的前沿工具。立即体验,开启你的智能检测之旅!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669