Baresip项目中关于Attended Transfer中Replaces头域缺失标签问题的分析与修复
在SIP协议中,Attended Transfer(人工转接)是一种常见的呼叫控制功能,它允许用户将一个已建立的呼叫转接到另一个目标。在实现这一功能时,RFC 3891规范要求Replaces头域必须包含完整的对话标识信息,包括call-id、to-tag和from-tag。然而,在Baresip项目的当前实现中发现了一个技术问题。
问题背景
Baresip项目中的call_replace_transfer函数负责生成Attended Transfer所需的REFER请求。在实现过程中,开发者发现生成的Replaces头域只包含了call-id信息,而缺少了to-tag和from-tag这两个关键参数。这种实现不符合RFC 3891规范的要求,导致与某些电话系统(如Asterisk)的兼容性问题。
技术分析
根据RFC 3891规范,Replaces头域必须完整标识一个SIP对话,其格式应为:
Replaces: call-id;to-tag=xxx;from-tag=yyy
在Baresip的原始实现中,call_replace_transfer函数生成的Refer-To头域仅包含call-id部分:
Refer-To: <target_uri?Replaces=call-id>
这种不完整的实现会导致目标系统无法正确识别被替换的对话,特别是在分布式环境中,仅凭call-id无法唯一标识一个SIP对话。
解决方案
为解决这一问题,开发者提出了以下修改方案:
- 在re库的sip/dialog.c中新增了两个API函数,用于获取对话的本地和远程标签:
const char *sip_dialog_ltag(const struct sip_dialog *dlg);
const char *sip_dialog_rtag(const struct sip_dialog *dlg);
- 修改call_replace_transfer函数,在生成Refer-To头域时包含完整的对话标识信息:
"Refer-To: <%s?Replaces=%s%%3Bto-tag%%3D%s%%3Bfrom-tag%%3D%s>"
- 对参数进行URL编码处理(使用%3B代替分号,%3D代替等号),确保特殊字符的正确传输。
实现意义
这一修复具有以下重要意义:
-
规范兼容性:使Baresip的Attended Transfer实现完全符合RFC 3891规范要求。
-
系统兼容性:解决了与Asterisk等电话系统的互操作问题,这些系统严格依赖完整的对话标识来识别被替换的呼叫。
-
功能完整性:确保了在复杂网络环境下,呼叫转接功能能够可靠工作,特别是在涉及多个中间服务器的场景中。
技术细节
在SIP协议中,一个完整的对话标识需要三个要素:
- Call-ID:呼叫的唯一标识
- To-Tag:被叫方生成的标签
- From-Tag:主叫方生成的标签
这三个要素共同构成了对话的唯一标识符。缺少任何一个都会导致对话识别失败,特别是在存在多个分支或并行呼叫的情况下。
总结
通过对Baresip项目中Attended Transfer实现的这一改进,不仅解决了与特定系统的兼容性问题,更重要的是提升了整个项目对SIP标准的遵从性。这种对细节的关注体现了开源项目持续改进的精神,也为其他SIP开发者提供了正确处理Replaces头域的参考范例。
对于使用Baresip进行呼叫控制开发的工程师来说,理解这一修改的技术背景和实现细节,有助于在遇到类似问题时快速定位和解决,同时也提醒我们在实现SIP功能时要严格遵循相关RFC规范。
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
2025百大提名项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。00note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04
热门内容推荐
最新内容推荐
项目优选









