BorderDet使用指南
2024-08-18 02:52:03作者:咎岭娴Homer
项目概述
BorderDet 是一个基于 PyTorch 实现的密集物体检测方法,首次提出于 ECCV 2020并进行了口头报告。本项目通过引入 Border Align 模块(BAM),有效利用边界信息来优化分类分数和边界框回归,进而提高检测性能。采用ResNeXt-101-DCN作为骨干网络时,它实现了50.3的AP值。
1. 目录结构及介绍
BorderDet的项目结构精心设计,便于开发者理解和定制。以下是核心目录结构及其简要说明:
BorderDet
│
├── configs # 配置文件夹,包含各种模型和数据集的配置文件。
├── core # 核心代码,包括训练、验证、测试等主要逻辑。
├── data # 数据处理相关脚本,如数据加载器和预处理步骤。
├── lib # 库文件,封装了模型架构、损失函数、工具函数等。
│ ├── layers # 自定义神经网络层。
│ ├── models # 包含 BorderDet 的模型架构。
│ └── utils # 各种实用工具和辅助功能。
├── scripts # 脚本集合,用于运行训练、评估或推理任务。
├── tools # 提供额外的工具,比如模型转换、可视化等。
└── README.md # 项目简介和快速入门指导。
2. 项目启动文件介绍
主要启动文件
scripts/train.py
: 训练新模型的主要入口点。通过修改命令行参数,可以指定不同的配置文件、工作目录等。scripts/test.py
: 用于模型的测试或评估,接受模型权重路径和相应的配置文件来生成检测结果。tools/eval.py
: 可以独立使用进行模型评估,适合已经完成了训练的模型进行成绩检验。
使用示例
假设你要开始一个新的训练过程,你可以通过以下命令调用train.py
:
python scripts/train.py --config-file configs/borderdet_r101_dcn.yaml
而要测试已训练好的模型,则可使用类似下面的命令:
python scripts/test.py --weights path/to/model.pth --config-file configs/borderdet_r101_dcn.yaml
3. 项目的配置文件介绍
配置文件位于configs
目录下,每种模型和实验场景都对应一个或一组.yaml
文件。这些文件详细描述了训练和测试的设置,包括但不限于:
- 模型设置 (
MODEL.*
): 定义使用的模型架构,如BorderDet_R101_DCN。 - 数据集设置 (
DATASETS.train
,DATASETS.val
): 指定训练和验证的数据集名称。 - 输入图像尺寸 (
INPUT.size_train
,INPUT.size_test
): 图像的预处理尺寸。 - 优化器设置 (
OPTIMIZER
): 如学习率、优化算法(SGD、Adam等)。 - 日志和保存设置 (
OUTPUT_DIR
): 指定实验的日志和模型权重保存路径。 - 训练迭代次数 (
SOLVER.max_iter
,SOLVER.checkpoint_period
): 控制训练周期和模型保存频率。 - 评估指标 (
TEST
部分): 设置评估期间的行为,如是否进行多尺度测试。
每个配置文件都是高度可定制的,允许研究者根据实验需求调整参数,从而探索模型的最佳表现。
以上就是BorderDet项目的基本使用指引,通过理解和调整这些组件,用户能够高效地运用此框架进行密集物体检测的研究与应用。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5