OpenPI项目中UR5机器人微调时的数据配置问题解析
2025-06-26 01:26:06作者:秋阔奎Evelyn
问题背景
在OpenPI项目中,用户尝试对UR5机器人进行微调时遇到了数据配置问题。具体表现为在数据转换过程中无法正确识别"actions"列,导致训练过程中出现KeyError错误。
核心问题分析
该问题的根源在于数据配置文件中键名映射的不一致性。原始数据集中的动作列名为"action",而模型期望的输入键名为"actions",这种命名差异导致了数据流的中断。
解决方案详解
经过技术验证,正确的解决方案需要从两个层面进行修改:
1. 数据重映射配置
在LeRobotUR5DataConfig类中,需要确保数据键名的正确映射。关键修改点在于RepackTransform部分:
_transforms.RepackTransform(
{
"observation.images.image": "image",
"observation.images.wrist_image": "wrist_image",
"observation.state": "state",
"actions": "action", # 将数据集中的"action"映射为模型需要的"actions"
"prompt": "prompt",
}
)
2. 输入输出处理逻辑
在UR5Inputs类中,需要正确处理状态和图像数据:
def __call__(self, data: dict) -> dict:
state = transforms.pad_to_dim(data["observation.state"], self.action_dim)
base_image = _parse_image(data["observation.images.test"])
wrist_image = _parse_image(data["observation.images.hand_image"])
inputs = {
"state": state,
"image": {
"base_0_rgb": base_image,
"left_wrist_0_rgb": wrist_image,
"right_wrist_0_rgb": np.zeros_like(base_image),
},
# ...其他输入配置
}
if "actions" in data:
actions = transforms.pad_to_dim(data["actions"], self.action_dim)
inputs["actions"] = actions
return inputs
技术要点解析
-
数据维度对齐:使用pad_to_dim确保状态向量和动作向量的维度与模型期望的输入维度一致。
-
图像数据处理:通过_parse_image函数统一图像数据的格式,确保无论是uint8还是float32类型都能被正确处理。
-
动作序列处理:在输出层明确指定只返回前7个动作维度(6个自由度+1个夹爪控制),符合UR5机器人的实际控制需求。
最佳实践建议
-
在配置数据映射时,建议先打印原始数据集的列名,确保键名映射的准确性。
-
对于机器人控制任务,建议在数据预处理阶段就完成绝对动作到相对动作的转换,这可以通过DeltaActions变换实现。
-
当使用多相机系统时,需要明确指定每个相机的图像数据及其掩码,如示例中对右腕相机的处理方式。
通过以上配置调整和技术实现,可以有效解决UR5机器人在OpenPI项目中微调时的数据配置问题,为后续的模型训练和部署奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120