对Contracode开源项目的使用教程
2025-04-21 14:06:04作者:伍霜盼Ellen
1. 项目介绍
Contracode是一个开源项目,它旨在通过自监督学习的方式学习程序的语义表示。这个项目提出了一种名为对比代码表示学习(Contrastive Code Representation Learning)的方法,通过生成源函数的文本变体,训练神经网络模型识别这些变体,从而提取出程序的 functionality-based 表示,而不是其形式表示。Contracode项目已经在GitHub上获得了166个星标和28个Fork,它使用Apache-2.0许可证。
2. 项目快速启动
在开始使用Contracode之前,请确保您已经安装了Python 3.7和NodeJS环境。以下是快速启动的步骤:
# 安装项目依赖
npm install
pip install -e
# 下载所需数据
python scripts/download_data.py
# 预训练模型
# 预训练Bidirectional LSTM模型
python representjs/pretrain_distributed.py pretrain_lstm2l_hidden \
--num_epochs=200 --batch_size=512 --lr=1e-4 --num_workers=4 \
--subword_regularization_alpha 0.1 --program_mode contrastive --label_mode contrastive --save_every 5000 \
--train_filepath=data/codesearchnet_javascript/javascript_augmented.pickle.gz \
--spm_filepath=data/codesearchnet_javascript/csnjs_8k_9995p_unigram_url.model \
--min_alternatives 2 --dist_url tcp://localhost:10001 --rank 0 \
--encoder_type lstm --lstm_project_mode hidden --n_encoder_layers 2
# 预训练Transformer模型
python representjs/pretrain_distributed.py pretrain_transformer \
--num_epochs=200 --batch_size=96 --lr=1e-4 --num_workers=6 \
--subword_regularization_alpha 0.1 --program_mode contrastive --label_mode contrastive --save_every 5000 \
--train_filepath=/dev/shm/codesearchnet_javascript/javascript_augmented.pickle.gz \
--spm_filepath=/dev/shm/codesearchnet_javascript/csnjs_8k_9995p_unigram_url.model \
--min_alternatives 1 --dist_url tcp://localhost:10001 --rank 0
3. 应用案例和最佳实践
Contracode预训练的模型可以应用于多种下游任务,例如代码摘要和类型预测。以下是一个类型预测的案例:
# 类型预测评估
python representjs/type_prediction.py eval \
--eval_filepath data/types/test_projects_gold_filtered.json \
--type_vocab_filepath data/types/target_wl \
--spm_filepath data/codesearchnet_javascript/csnjs_8k_9995p_unigram_url.model \
--num_workers 4 --batch_size 1 --max_seq_len -1 --no_output_attention True \
--encoder_type lstm --n_encoder_layers 2 --resume_path data/ft/ckpt_lstm_ft_types.pth
4. 典型生态项目
Contracode的生态项目包括但不限于以下几种:
- 代码搜索工具:通过Contracode预训练的模型,可以开发出更智能的代码搜索工具,帮助开发者快速找到相似的代码段。
- 智能编程助手:集成Contracode模型,可以为开发者提供实时的代码建议和自动补全功能。
- 代码质量分析:利用Contracode模型分析代码的复杂度和质量,帮助维护和优化大型代码库。
通过上述教程,您可以开始使用Contracode项目,并根据需要将其集成到自己的应用中。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
249
2.48 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
88
119
暂无简介
Dart
548
119
React Native鸿蒙化仓库
JavaScript
217
298
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
126
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
356
1.75 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
153
204