SparkTorch 使用教程
2024-09-25 15:21:29作者:韦蓉瑛
1. 项目介绍
SparkTorch 是一个在 Apache Spark 上训练和运行 PyTorch 模型的开源库。它的主要目标是提供一个简单且易于理解的接口,使得用户可以在 Spark 上分布式地训练 PyTorch 模型。SparkTorch 支持两种分布式训练方法:树形归约(tree reductions)和参数服务器(parameter server)。通过 API,用户可以指定训练的风格,无论是分布式同步还是异步(hogwild)。
SparkTorch 的主要特点包括:
- 数据并行分布式训练:适用于处理非常大的数据集,这些数据集无法在一台机器上处理。
- 与 Spark ML 库的完全集成:确保你可以保存和加载带有训练模型的管道。
- 推理:可以加载现有的训练模型并在数十亿条记录上并行运行推理。
2. 项目快速启动
安装
首先,通过 pip 安装 SparkTorch:
pip install sparktorch
基本示例
以下是一个简单的示例,展示如何在 Spark 上使用 SparkTorch 训练一个 PyTorch 模型。
from sparktorch import serialize_torch_obj
import torch
import torch.nn as nn
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
from pyspark.ml.pipeline import Pipeline
# 初始化 Spark 会话
spark = SparkSession.builder.appName("examples").master('local[2]').getOrCreate()
# 读取数据
df = spark.read.option("inferSchema", "true").csv('mnist_train.csv').coalesce(2)
# 定义 PyTorch 模型
network = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 10),
nn.Softmax(dim=1)
)
# 序列化 PyTorch 对象
torch_obj = serialize_torch_obj(
model=network,
criterion=nn.CrossEntropyLoss(),
optimizer=torch.optim.Adam,
lr=0.0001
)
# 设置特征向量
vector_assembler = VectorAssembler(inputCols=df.columns[1:785], outputCol='features')
# 创建 SparkTorch 模型
spark_model = SparkTorch(
inputCol='features',
labelCol='_c0',
predictionCol='predictions',
torchObj=torch_obj,
iters=50,
verbose=1
)
# 创建并保存管道
p = Pipeline(stages=[vector_assembler, spark_model]).fit(df)
p.save('simple_dnn')
3. 应用案例和最佳实践
应用案例
SparkTorch 可以用于处理大规模的深度学习任务,例如:
- 图像分类:使用 SparkTorch 在分布式环境中训练图像分类模型。
- 自然语言处理:在 Spark 上分布式地训练 NLP 模型。
最佳实践
- 数据分区:确保数据分区合理,以避免内存溢出错误。
- 模型优化:使用适当的优化器和学习率,以提高模型训练效率。
- 监控训练过程:通过设置
verbose=1来监控训练过程中的日志输出。
4. 典型生态项目
SparkTorch 可以与其他 Apache Spark 生态系统中的项目结合使用,例如:
- MLlib:Spark 的机器学习库,可以与 SparkTorch 结合使用,构建完整的机器学习管道。
- Delta Lake:用于构建可靠的数据湖,可以与 SparkTorch 结合使用,处理大规模数据集。
- GraphFrames:用于处理图数据的库,可以与 SparkTorch 结合使用,进行图神经网络的训练。
通过结合这些生态项目,SparkTorch 可以更好地满足复杂的大数据处理和深度学习需求。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328