SparkTorch 使用教程
2024-09-25 14:43:13作者:韦蓉瑛
1. 项目介绍
SparkTorch 是一个在 Apache Spark 上训练和运行 PyTorch 模型的开源库。它的主要目标是提供一个简单且易于理解的接口,使得用户可以在 Spark 上分布式地训练 PyTorch 模型。SparkTorch 支持两种分布式训练方法:树形归约(tree reductions)和参数服务器(parameter server)。通过 API,用户可以指定训练的风格,无论是分布式同步还是异步(hogwild)。
SparkTorch 的主要特点包括:
- 数据并行分布式训练:适用于处理非常大的数据集,这些数据集无法在一台机器上处理。
- 与 Spark ML 库的完全集成:确保你可以保存和加载带有训练模型的管道。
- 推理:可以加载现有的训练模型并在数十亿条记录上并行运行推理。
2. 项目快速启动
安装
首先,通过 pip 安装 SparkTorch:
pip install sparktorch
基本示例
以下是一个简单的示例,展示如何在 Spark 上使用 SparkTorch 训练一个 PyTorch 模型。
from sparktorch import serialize_torch_obj
import torch
import torch.nn as nn
from pyspark.ml.feature import VectorAssembler
from pyspark.sql import SparkSession
from pyspark.ml.pipeline import Pipeline
# 初始化 Spark 会话
spark = SparkSession.builder.appName("examples").master('local[2]').getOrCreate()
# 读取数据
df = spark.read.option("inferSchema", "true").csv('mnist_train.csv').coalesce(2)
# 定义 PyTorch 模型
network = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 10),
nn.Softmax(dim=1)
)
# 序列化 PyTorch 对象
torch_obj = serialize_torch_obj(
model=network,
criterion=nn.CrossEntropyLoss(),
optimizer=torch.optim.Adam,
lr=0.0001
)
# 设置特征向量
vector_assembler = VectorAssembler(inputCols=df.columns[1:785], outputCol='features')
# 创建 SparkTorch 模型
spark_model = SparkTorch(
inputCol='features',
labelCol='_c0',
predictionCol='predictions',
torchObj=torch_obj,
iters=50,
verbose=1
)
# 创建并保存管道
p = Pipeline(stages=[vector_assembler, spark_model]).fit(df)
p.save('simple_dnn')
3. 应用案例和最佳实践
应用案例
SparkTorch 可以用于处理大规模的深度学习任务,例如:
- 图像分类:使用 SparkTorch 在分布式环境中训练图像分类模型。
- 自然语言处理:在 Spark 上分布式地训练 NLP 模型。
最佳实践
- 数据分区:确保数据分区合理,以避免内存溢出错误。
- 模型优化:使用适当的优化器和学习率,以提高模型训练效率。
- 监控训练过程:通过设置
verbose=1来监控训练过程中的日志输出。
4. 典型生态项目
SparkTorch 可以与其他 Apache Spark 生态系统中的项目结合使用,例如:
- MLlib:Spark 的机器学习库,可以与 SparkTorch 结合使用,构建完整的机器学习管道。
- Delta Lake:用于构建可靠的数据湖,可以与 SparkTorch 结合使用,处理大规模数据集。
- GraphFrames:用于处理图数据的库,可以与 SparkTorch 结合使用,进行图神经网络的训练。
通过结合这些生态项目,SparkTorch 可以更好地满足复杂的大数据处理和深度学习需求。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
251
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216