Habitat-Sim中语义区域功能的使用指南
2025-06-27 10:38:58作者:魏献源Searcher
概述
Habitat-Sim作为一款强大的3D仿真平台,在0.3.1版本中引入了语义区域(Semantic Regions)功能,这一特性为场景理解和智能体导航提供了更丰富的语义信息支持。本文将详细介绍如何在Habitat-Sim中配置和使用语义区域功能。
语义区域功能介绍
语义区域是指3D场景中具有特定语义意义的区域,如"健身房"、"卧室"等。Habitat-Sim 0.3.1版本新增了以下关键功能:
- 获取点所在的语义区域
- 获取语义区域的边界多边形点集
- 获取语义区域的地板高度和拉伸高度
这些功能为基于语义的导航、场景理解等任务提供了基础支持。
配置语义区域数据
要在Habitat-Sim中使用语义区域功能,需要正确配置场景数据集。以下是配置步骤:
1. 创建语义区域配置文件
创建一个JSON格式的语义区域配置文件,例如GLAQ4DNUx5U.semantic_config.json,内容如下:
{
"region_annotations": [
{
"name": "gym",
"label": "workout/gym/exercise",
"poly_loop": [
[0.26291, 0.0, -9.53374],
[-3.285, 0.0, -9.53374],
[-3.286, 0.0, -13.758],
[0.26391, 0.0, -13.758]
],
"floor_height": 0.0,
"extrusion_height": 2.8,
"min_bounds": [-3.286, 0.0, -13.758],
"max_bounds": [0.26391, 2.8, -9.53374]
}
]
}
关键字段说明:
name: 区域名称label: 语义标签poly_loop: 定义区域边界的三维点集floor_height: 区域地板高度extrusion_height: 区域高度min_bounds/max_bounds: 区域包围盒
2. 创建场景实例配置文件
创建一个简单的场景实例配置文件GLAQ4DNUx5U.scene_instance.json:
{
"stage_instance": {
"template_name": "GLAQ4DNUx5U"
}
}
3. 修改场景数据集配置文件
更新场景数据集配置文件hm3d_annotated_example_basis.scene_dataset_config.json,确保正确引用语义区域配置:
{
"stages": {
"paths": {
".glb": ["00861-GLAQ4DNUx5U/*.basis.glb"]
},
"default_attributes": {
"shader_type": "flat",
"up": [0, 0, 1],
"front": [0, 1, 0],
"origin": [0, 0, 0],
"has_semantic_textures": true
}
},
"scene_instances": {
"default_attributes": {
"default_lighting": "no_lights",
"semantic_scene_instance": "%%CONFIG_NAME_AS_ASSET_FILENAME%%.semantic_config.json"
},
"paths": {
".json": ["00861-GLAQ4DNUx5U/*.scene_instance.json"]
}
},
"semantic_scene_descriptor_instances": {
"default_attributes": {
"semantic_descriptor_filename": "%%CONFIG_NAME_AS_ASSET_FILENAME%%.semantic.txt",
"semantic_asset": "%%CONFIG_NAME_AS_ASSET_FILENAME%%.semantic.glb"
},
"paths": {
".json": ["00861-GLAQ4DNUx5U/*.semantic_config.json"]
}
}
}
使用语义区域功能
配置完成后,可以通过以下方式使用语义区域功能:
- 查看场景中的语义区域数量:
print(f"Regions = {len(self.sim.semantic_scene.regions)}")
- 遍历所有语义区域:
for region in self.sim.semantic_scene.regions:
print(f"Region: {region.id}")
- 可视化语义区域: 在Habitat-Sim查看器中,按'j'键可以切换语义区域的显示。
实际应用场景
语义区域功能可以应用于多种AI和机器人研究场景:
- 语义导航:让智能体理解"去厨房"等高级指令
- 场景理解:分析场景的功能区域分布
- 行为规划:根据区域语义约束智能体行为
- 数据集标注:为机器学习提供丰富的语义标注
最佳实践建议
- 确保语义区域的边界多边形是闭合的
- 合理设置地板高度和拉伸高度,确保覆盖整个区域空间
- 使用有意义的语义标签,便于后续处理
- 在大型场景中,考虑区域划分的合理性
通过正确配置和使用Habitat-Sim的语义区域功能,研究人员可以构建更加智能和语义感知的虚拟环境,为各种AI研究提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895