Liger-Kernel项目中关于RMSNorm与SwiGLU激活重计算的技术解析
2025-06-10 16:49:39作者:胡易黎Nicole
背景与问题概述
在深度学习模型训练过程中,内存消耗一直是制约模型规模扩展的关键瓶颈。特别是在处理大规模语言模型时,诸如RMSNorm层和SwiGLU激活函数这类操作会占用大量显存存储中间结果。Liger-Kernel项目社区近期探讨了如何通过激活重计算技术来优化这一问题的解决方案。
技术原理分析
激活重计算的核心思想
激活重计算(Activation Recomputation)是一种典型的时间换空间策略,其核心思想是在前向传播过程中不保存某些中间计算结果,而是在反向传播需要时重新计算这些值。这种方法可以显著减少显存占用,但会增加一定的计算开销。
RMSNorm的特殊性
RMSNorm(Root Mean Square Layer Normalization)是LayerNorm的一种变体,它计算输入特征的均方根值进行归一化。在传统实现中,需要保存每行的标准差用于反向传播。值得注意的是,这部分中间张量的尺寸通常不大,因为它是按行计算的统计量。
SwiGLU激活函数的特点
SwiGLU(Switched Gated Linear Unit)结合了Sigmoid线性门控单元和Swish激活函数。在前向传播过程中,它会产生较大的中间激活值,这些值在标准实现中会被保存用于反向传播。
实现方案对比
基于PyTorch钩子机制的方案
社区中提出了一种基于PyTorch的register_hook机制的手动重计算方法。该方法通过以下步骤实现:
- 在前向传播后立即丢弃中间激活值
- 在反向传播时通过注册的钩子重新计算所需激活
- 使用随机数生成器状态记录器确保随机操作的确定性
内核级优化方案
Liger-Kernel团队提出了更底层的优化思路,认为直接在CUDA内核中实现重计算比通过PyTorch机制更高效。这种方案的潜在优势包括:
- 避免了额外的内核启动开销
- 减少了HBM与SRAM之间的数据传输
- 可以更精细地控制内存访问模式
性能考量
在实际应用中,选择哪种实现方案需要考虑以下因素:
- 中间张量的尺寸与重计算成本比
- 硬件特性(如内存带宽与计算能力的平衡)
- 框架层面的调度开销
- 随机数生成的一致性需求
技术展望
随着大模型训练的持续发展,内存优化技术将变得越来越重要。未来可能的发展方向包括:
- 更智能的自动重计算策略选择
- 与混合精度训练的深度结合
- 针对特定硬件的定制化优化
- 编译器级别的自动优化
这种底层优化工作虽然技术门槛较高,但对于推动大模型训练的边界具有重要价值,值得深度学习系统研发人员持续关注和投入。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19