Minimind项目中使用lm_eval进行模型评估的配置要点
2025-05-11 17:22:46作者:廉彬冶Miranda
在Minimind项目中使用lm_eval工具进行模型评估时,配置文件的正确设置至关重要。本文将从技术角度详细解析如何正确配置评估参数,特别是针对transformers格式模型的评估设置。
评估工具的基本使用
lm_eval是常用的语言模型评估工具,支持多种模型架构和评估任务。在Minimind项目中,典型的评估命令格式如下:
lm_eval --model hf \
--model_args pretrained=<模型路径>,device=cuda,dtype=auto \
--tasks ceval* \
--batch_size 8 \
--trust_remote_code
关键配置参数解析
-
模型路径参数:
pretrained参数必须指向包含完整transformers格式模型的目录- 该目录应包含
config.json、pytorch_model.bin等标准文件 - 仅包含PyTorch权重文件的目录(如
out目录)无法直接使用
-
设备与精度设置:
device=cuda指定使用GPU进行评估dtype=auto允许自动选择合适的数据类型- 对于大模型,可考虑使用
dtype=bfloat16节省显存
-
评估任务选择:
ceval*通配符表示选择所有CEval相关任务- 也可指定具体任务如
ceval-high_school_physics
-
信任远程代码:
--trust_remote_code参数允许加载自定义模型代码- 对于非标准模型架构是必需的
常见错误处理
-
模型路径错误:
- 确保路径指向transformers格式的完整模型
- 检查目录是否包含必要的配置文件
-
配置缺失问题:
- 如果遇到
Unrecognized model错误 - 确认
config.json中包含正确的model_type字段
- 如果遇到
-
显存不足问题:
- 可尝试减小
batch_size参数 - 或使用更低的精度设置如
dtype=float16
- 可尝试减小
最佳实践建议
- 在评估前先确认模型格式完整
- 对于大型评估任务,建议先在少量样本上测试
- 记录完整的评估命令和参数以便复现
- 考虑使用评估结果缓存提高效率
通过正确配置这些参数,可以确保在Minimind项目中获得准确可靠的模型评估结果,为后续的模型优化和改进提供有力依据。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669