Python-TUF项目安全评分提升实践
项目背景
Python-TUF项目作为CNCF旗下的重要安全项目,近期参与了由CNCF和Google开源安全团队合作的GSoC 2024计划,旨在提升开源项目的安全实践水平。该项目目前OpenSSF Scorecard评分为7.9分,仍有提升空间。
安全改进措施
1. 令牌权限优化
项目中的GitHub Actions工作流存在令牌权限配置问题。通过在所有工作流中添加顶层只读权限声明,可以显著提升Token-Permissions项的评分。这一改进虽然不会改变默认行为,但能更好地显式声明安全意图。
2. 发布签名机制
Python-TUF作为安全关键项目,发布签名尤为重要。虽然Python包主要通过PyPI分发,但为其他分发渠道添加签名和来源证明(SLSA)仍然有价值。可以使用专门的PyPI发布GitHub Action来实现自动签名,同时考虑集成SLSA框架生成来源证明。
3. 模糊测试集成
对于Python项目,有效的模糊测试实施具有挑战性。需要识别项目中适合进行模糊测试的组件,并设计相应的测试策略。虽然OSSF评分中此项为0分,但实际实施需要权衡投入产出比。
4. 依赖项固定策略
项目已经对安全关键的Python依赖和GitHub Actions进行了哈希固定。对于非关键性操作,如仅用于检查的依赖审查Action,项目选择不固定以降低维护负担。这种平衡安全性和维护成本的做法值得借鉴。
实施效果与思考
通过上述改进,Python-TUF项目在多个安全维度上得到了提升。特别是令牌权限的显式声明和发布签名机制的引入,直接提高了项目的安全基线。
值得注意的是,安全评分工具提供的建议需要结合实际项目情况进行评估。Python-TUF项目团队在依赖固定策略上的选择体现了专业判断——不是盲目追求最高评分,而是在安全性和可维护性之间寻找平衡点。
对于其他Python项目,特别是安全敏感项目,可以参考Python-TUF的这些实践:
- 显式声明工作流权限
- 对关键依赖进行哈希固定
- 考虑发布签名机制
- 评估模糊测试的可行性
这些措施共同构成了一个渐进式的安全改进路径,项目可以根据自身情况分阶段实施。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00