在Home Assistant OS中配置Changedetection.io与Browserless Chromium集成
前言
Changedetection.io是一个强大的网站变更检测工具,而Browserless Chromium则提供了无头浏览器功能。在Home Assistant OS环境中将这两个插件集成使用,可以显著增强Changedetection.io的网页抓取能力,特别是对于那些需要JavaScript渲染的现代网页。
配置步骤详解
1. 安装必要插件
首先确保已在Home Assistant OS中安装以下两个插件:
- Changedetection.io
- Browserless Chromium
2. Browserless Chromium配置
Browserless Chromium插件安装后默认会运行在3000端口。验证其正常运行的方法是通过浏览器访问http://[你的HA IP]:3000/docs,应该能看到API文档页面。
重要提示:建议保持默认的3000端口,修改端口可能导致连接问题。
3. 获取Browserless Chromium的主机名
有两种方法可以获取Browserless Chromium的主机名:
-
通过UI查看: 在Home Assistant的插件页面,Browserless Chromium插件卡片上会显示其完整主机名。
-
通过SSH查看: 连接到Home Assistant的SSH后,执行命令:
docker exec -i hassio_dns cat "/config/hosts"在输出中查找类似这样的行:
172.30.33.5 2937404c-browserless-chrome 2937404c-browserless-chrome.local.hass.io使用
2937404c-browserless-chrome或完整主机名均可。
4. 配置Changedetection.io
使用Home Assistant的文件编辑器插件,编辑以下文件:
/homeassistant/addons_config/changedetection.io/config.yaml
在文件末尾添加以下配置(注意保留文件末尾的空行):
PLAYWRIGHT_DRIVER_URL: ws://[Browserless主机名]:3000/chromium?launch={"defaultViewport":{"height":720,"width":1280},"headless":false,"stealth":true}&blockAds=true
其中[Browserless主机名]替换为前面获取的主机名。
5. 重启Changedetection.io插件
完成配置后,重启Changedetection.io插件使配置生效。
功能验证
在Changedetection.io的网页界面中,现在应该能够选择"WebDriver Chrome/Javascript"作为抓取方法。创建一个新的监控任务,选择此方法,系统将使用Browserless Chromium来渲染网页。
常见问题解决
-
连接失败:
- 确认Browserless Chromium运行在3000端口
- 检查主机名是否正确
- 确保配置中的协议是
ws://而非http://
-
性能问题:
- 可以调整
defaultViewport参数中的分辨率 - 对于复杂网页,可以增加超时时间
- 可以调整
-
广告屏蔽: 配置中的
blockAds=true参数会启用广告屏蔽,若不需要可移除
高级配置建议
对于需要更复杂交互的网页,可以在配置中添加更多Playwright启动参数,例如:
ignoreHTTPSErrors: 忽略HTTPS错误slowMo: 减慢操作速度(调试用)timeout: 设置超时时间
通过这种集成方式,Changedetection.io获得了处理现代JavaScript网页的能力,大大扩展了其监控范围和应用场景。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0132
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00