BlackSheep框架中的OpenTelemetry集成指南
2025-07-04 21:59:03作者:卓炯娓
概述
在现代Web应用开发中,监控和可观测性变得越来越重要。本文将详细介绍如何在BlackSheep框架中集成OpenTelemetry,实现请求追踪、性能监控和错误记录等功能。
OpenTelemetry简介
OpenTelemetry是一个开源的观测性框架,用于生成、收集和导出遥测数据(指标、日志和追踪)。它已经成为云原生应用监控的事实标准。
BlackSheep中的集成方案
BlackSheep框架提供了灵活的方式来集成OpenTelemetry,开发者可以选择以下两种主要方法:
1. 继承Application类
通过继承BlackSheep的Application类并重写关键方法,可以实现细粒度的追踪控制:
class OTELApplication(Application):
requests_spans = weakref.WeakKeyDictionary()
async def handle(self, request: Request) -> Response:
tracer = trace.get_tracer(__name__)
path = request.url.path.decode("utf8")
method = request.method
with tracer.start_as_current_span(f"{method} {path}") as span:
self.requests_spans[request] = span
response = await super().handle(request)
# 更新span信息
route = request.route
span.update_name(f"{method} {route}")
span.set_attribute("http.status_code", response.status)
# 其他属性设置...
return response
async def handle_internal_server_error(self, request: Request, exc: Exception) -> Response:
span = self.requests_spans.get(request)
if span is not None:
span.record_exception(exc)
span.set_status(trace.Status(trace.StatusCode.ERROR))
return await super().handle_internal_server_error(request, exc)
2. 使用内置的OpenTelemetry中间件
BlackSheep最新版本提供了开箱即用的OpenTelemetry支持:
from blacksheep.server.otel import OpenTelemetryConfiguration, OpenTelemetryMiddleware
app = Application()
app.middlewares.append(
OpenTelemetryMiddleware(
OpenTelemetryConfiguration(
service_name="my-service",
service_version="1.0.0",
# 其他配置...
)
)
)
关键实现细节
- 路由追踪:为了降低日志基数,需要记录匹配的路由模式而非具体URL路径。可以通过包装路由匹配方法实现:
def wrap_get_route_match(fn):
@wraps(fn)
def get_route_match(request):
match = fn(request)
request.route = match.pattern.decode() if match else "Not Found"
return match
return get_route_match
-
异常处理:在内部服务器错误处理中记录异常信息,帮助快速定位问题。
-
资源清理:应用停止时需要正确关闭TracerProvider,确保所有span都能被导出。
与Grafana集成
配置好OpenTelemetry导出器后,数据可以无缝接入Grafana的可观测性平台:
- 配置OTLP导出器指向Grafana的收集端点
- 设置适当的资源属性
- 在Grafana中创建相应的仪表盘
最佳实践
- 环境变量管理:安全地处理敏感配置信息,避免硬编码
- 性能考量:批量处理span导出,减少对请求处理的影响
- 错误处理:妥善处理导出失败的情况,避免影响主业务流程
- 采样策略:根据业务需求配置适当的采样率
总结
BlackSheep框架通过灵活的架构设计,使得OpenTelemetry集成变得简单而强大。无论是通过继承方式还是使用内置中间件,开发者都能轻松实现应用的可观测性需求。这种集成不仅帮助开发者监控应用性能,还能快速定位和解决问题,是构建可靠Web应用的重要一环。
对于生产环境应用,建议结合日志、指标和追踪三方面的数据,构建完整的可观测性体系,从而更好地理解系统行为,提升运维效率。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++094AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
193
2.16 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
972
573

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
548
77

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
206
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17