BlackSheep框架中的OpenTelemetry集成指南
2025-07-04 21:59:03作者:卓炯娓
概述
在现代Web应用开发中,监控和可观测性变得越来越重要。本文将详细介绍如何在BlackSheep框架中集成OpenTelemetry,实现请求追踪、性能监控和错误记录等功能。
OpenTelemetry简介
OpenTelemetry是一个开源的观测性框架,用于生成、收集和导出遥测数据(指标、日志和追踪)。它已经成为云原生应用监控的事实标准。
BlackSheep中的集成方案
BlackSheep框架提供了灵活的方式来集成OpenTelemetry,开发者可以选择以下两种主要方法:
1. 继承Application类
通过继承BlackSheep的Application类并重写关键方法,可以实现细粒度的追踪控制:
class OTELApplication(Application):
requests_spans = weakref.WeakKeyDictionary()
async def handle(self, request: Request) -> Response:
tracer = trace.get_tracer(__name__)
path = request.url.path.decode("utf8")
method = request.method
with tracer.start_as_current_span(f"{method} {path}") as span:
self.requests_spans[request] = span
response = await super().handle(request)
# 更新span信息
route = request.route
span.update_name(f"{method} {route}")
span.set_attribute("http.status_code", response.status)
# 其他属性设置...
return response
async def handle_internal_server_error(self, request: Request, exc: Exception) -> Response:
span = self.requests_spans.get(request)
if span is not None:
span.record_exception(exc)
span.set_status(trace.Status(trace.StatusCode.ERROR))
return await super().handle_internal_server_error(request, exc)
2. 使用内置的OpenTelemetry中间件
BlackSheep最新版本提供了开箱即用的OpenTelemetry支持:
from blacksheep.server.otel import OpenTelemetryConfiguration, OpenTelemetryMiddleware
app = Application()
app.middlewares.append(
OpenTelemetryMiddleware(
OpenTelemetryConfiguration(
service_name="my-service",
service_version="1.0.0",
# 其他配置...
)
)
)
关键实现细节
- 路由追踪:为了降低日志基数,需要记录匹配的路由模式而非具体URL路径。可以通过包装路由匹配方法实现:
def wrap_get_route_match(fn):
@wraps(fn)
def get_route_match(request):
match = fn(request)
request.route = match.pattern.decode() if match else "Not Found"
return match
return get_route_match
-
异常处理:在内部服务器错误处理中记录异常信息,帮助快速定位问题。
-
资源清理:应用停止时需要正确关闭TracerProvider,确保所有span都能被导出。
与Grafana集成
配置好OpenTelemetry导出器后,数据可以无缝接入Grafana的可观测性平台:
- 配置OTLP导出器指向Grafana的收集端点
- 设置适当的资源属性
- 在Grafana中创建相应的仪表盘
最佳实践
- 环境变量管理:安全地处理敏感配置信息,避免硬编码
- 性能考量:批量处理span导出,减少对请求处理的影响
- 错误处理:妥善处理导出失败的情况,避免影响主业务流程
- 采样策略:根据业务需求配置适当的采样率
总结
BlackSheep框架通过灵活的架构设计,使得OpenTelemetry集成变得简单而强大。无论是通过继承方式还是使用内置中间件,开发者都能轻松实现应用的可观测性需求。这种集成不仅帮助开发者监控应用性能,还能快速定位和解决问题,是构建可靠Web应用的重要一环。
对于生产环境应用,建议结合日志、指标和追踪三方面的数据,构建完整的可观测性体系,从而更好地理解系统行为,提升运维效率。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
183
13
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
105
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.86 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
732
70