BlackSheep框架中的OpenTelemetry集成指南
2025-07-04 01:06:18作者:卓炯娓
概述
在现代Web应用开发中,监控和可观测性变得越来越重要。本文将详细介绍如何在BlackSheep框架中集成OpenTelemetry,实现请求追踪、性能监控和错误记录等功能。
OpenTelemetry简介
OpenTelemetry是一个开源的观测性框架,用于生成、收集和导出遥测数据(指标、日志和追踪)。它已经成为云原生应用监控的事实标准。
BlackSheep中的集成方案
BlackSheep框架提供了灵活的方式来集成OpenTelemetry,开发者可以选择以下两种主要方法:
1. 继承Application类
通过继承BlackSheep的Application类并重写关键方法,可以实现细粒度的追踪控制:
class OTELApplication(Application):
requests_spans = weakref.WeakKeyDictionary()
async def handle(self, request: Request) -> Response:
tracer = trace.get_tracer(__name__)
path = request.url.path.decode("utf8")
method = request.method
with tracer.start_as_current_span(f"{method} {path}") as span:
self.requests_spans[request] = span
response = await super().handle(request)
# 更新span信息
route = request.route
span.update_name(f"{method} {route}")
span.set_attribute("http.status_code", response.status)
# 其他属性设置...
return response
async def handle_internal_server_error(self, request: Request, exc: Exception) -> Response:
span = self.requests_spans.get(request)
if span is not None:
span.record_exception(exc)
span.set_status(trace.Status(trace.StatusCode.ERROR))
return await super().handle_internal_server_error(request, exc)
2. 使用内置的OpenTelemetry中间件
BlackSheep最新版本提供了开箱即用的OpenTelemetry支持:
from blacksheep.server.otel import OpenTelemetryConfiguration, OpenTelemetryMiddleware
app = Application()
app.middlewares.append(
OpenTelemetryMiddleware(
OpenTelemetryConfiguration(
service_name="my-service",
service_version="1.0.0",
# 其他配置...
)
)
)
关键实现细节
- 路由追踪:为了降低日志基数,需要记录匹配的路由模式而非具体URL路径。可以通过包装路由匹配方法实现:
def wrap_get_route_match(fn):
@wraps(fn)
def get_route_match(request):
match = fn(request)
request.route = match.pattern.decode() if match else "Not Found"
return match
return get_route_match
-
异常处理:在内部服务器错误处理中记录异常信息,帮助快速定位问题。
-
资源清理:应用停止时需要正确关闭TracerProvider,确保所有span都能被导出。
与Grafana集成
配置好OpenTelemetry导出器后,数据可以无缝接入Grafana的可观测性平台:
- 配置OTLP导出器指向Grafana的收集端点
- 设置适当的资源属性
- 在Grafana中创建相应的仪表盘
最佳实践
- 环境变量管理:安全地处理敏感配置信息,避免硬编码
- 性能考量:批量处理span导出,减少对请求处理的影响
- 错误处理:妥善处理导出失败的情况,避免影响主业务流程
- 采样策略:根据业务需求配置适当的采样率
总结
BlackSheep框架通过灵活的架构设计,使得OpenTelemetry集成变得简单而强大。无论是通过继承方式还是使用内置中间件,开发者都能轻松实现应用的可观测性需求。这种集成不仅帮助开发者监控应用性能,还能快速定位和解决问题,是构建可靠Web应用的重要一环。
对于生产环境应用,建议结合日志、指标和追踪三方面的数据,构建完整的可观测性体系,从而更好地理解系统行为,提升运维效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1