BlackSheep框架中的OpenTelemetry集成指南
2025-07-04 08:25:33作者:卓炯娓
概述
在现代Web应用开发中,监控和可观测性变得越来越重要。本文将详细介绍如何在BlackSheep框架中集成OpenTelemetry,实现请求追踪、性能监控和错误记录等功能。
OpenTelemetry简介
OpenTelemetry是一个开源的观测性框架,用于生成、收集和导出遥测数据(指标、日志和追踪)。它已经成为云原生应用监控的事实标准。
BlackSheep中的集成方案
BlackSheep框架提供了灵活的方式来集成OpenTelemetry,开发者可以选择以下两种主要方法:
1. 继承Application类
通过继承BlackSheep的Application类并重写关键方法,可以实现细粒度的追踪控制:
class OTELApplication(Application):
requests_spans = weakref.WeakKeyDictionary()
async def handle(self, request: Request) -> Response:
tracer = trace.get_tracer(__name__)
path = request.url.path.decode("utf8")
method = request.method
with tracer.start_as_current_span(f"{method} {path}") as span:
self.requests_spans[request] = span
response = await super().handle(request)
# 更新span信息
route = request.route
span.update_name(f"{method} {route}")
span.set_attribute("http.status_code", response.status)
# 其他属性设置...
return response
async def handle_internal_server_error(self, request: Request, exc: Exception) -> Response:
span = self.requests_spans.get(request)
if span is not None:
span.record_exception(exc)
span.set_status(trace.Status(trace.StatusCode.ERROR))
return await super().handle_internal_server_error(request, exc)
2. 使用内置的OpenTelemetry中间件
BlackSheep最新版本提供了开箱即用的OpenTelemetry支持:
from blacksheep.server.otel import OpenTelemetryConfiguration, OpenTelemetryMiddleware
app = Application()
app.middlewares.append(
OpenTelemetryMiddleware(
OpenTelemetryConfiguration(
service_name="my-service",
service_version="1.0.0",
# 其他配置...
)
)
)
关键实现细节
- 路由追踪:为了降低日志基数,需要记录匹配的路由模式而非具体URL路径。可以通过包装路由匹配方法实现:
def wrap_get_route_match(fn):
@wraps(fn)
def get_route_match(request):
match = fn(request)
request.route = match.pattern.decode() if match else "Not Found"
return match
return get_route_match
-
异常处理:在内部服务器错误处理中记录异常信息,帮助快速定位问题。
-
资源清理:应用停止时需要正确关闭TracerProvider,确保所有span都能被导出。
与Grafana集成
配置好OpenTelemetry导出器后,数据可以无缝接入Grafana的可观测性平台:
- 配置OTLP导出器指向Grafana的收集端点
- 设置适当的资源属性
- 在Grafana中创建相应的仪表盘
最佳实践
- 环境变量管理:安全地处理敏感配置信息,避免硬编码
- 性能考量:批量处理span导出,减少对请求处理的影响
- 错误处理:妥善处理导出失败的情况,避免影响主业务流程
- 采样策略:根据业务需求配置适当的采样率
总结
BlackSheep框架通过灵活的架构设计,使得OpenTelemetry集成变得简单而强大。无论是通过继承方式还是使用内置中间件,开发者都能轻松实现应用的可观测性需求。这种集成不仅帮助开发者监控应用性能,还能快速定位和解决问题,是构建可靠Web应用的重要一环。
对于生产环境应用,建议结合日志、指标和追踪三方面的数据,构建完整的可观测性体系,从而更好地理解系统行为,提升运维效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355