gRPC-Swagger 项目使用教程
1. 项目介绍
gRPC-Swagger 是一个基于 gRPC 反射开发的调试工具,旨在通过 Swagger UI 方便地列出和调用 gRPC 方法。gRPC-Swagger 的核心功能是利用 gRPC 的反射机制,使得用户无需修改 proto 文件和相关代码实现,只需在启动服务时启用反射功能即可。
主要特性
- 易于使用:只需在启动服务时启用反射功能,无需修改 proto 文件和相关代码实现。
- 集成 Swagger UI:通过 Swagger UI 方便地查看 gRPC 方法的定义和参数。
- 简单调用:通过 Swagger UI 可以直接调用 gRPC 方法。
2. 项目快速启动
2.1 使用已发布的 JAR 包
首先,下载最新的 gRPC-Swagger JAR 包:
wget https://github.com/grpc-swagger/grpc-swagger/releases/latest/download/grpc-swagger.jar
然后,运行 JAR 包:
java -jar grpc-swagger.jar
默认情况下,gRPC-Swagger 会在端口 8080 上启动。如果需要使用其他端口,可以使用 --server.port 参数:
java -jar grpc-swagger.jar --server.port=8888
2.2 从源码构建
首先,克隆项目源码:
git clone https://github.com/grpc-swagger/grpc-swagger.git
cd grpc-swagger
然后,使用 Maven 构建项目:
mvn clean package
最后,运行生成的 JAR 包:
java -jar grpc-swagger-web/target/grpc-swagger.jar
3. 应用案例和最佳实践
3.1 启用 gRPC 反射
在使用 gRPC-Swagger 之前,需要在 gRPC 服务中启用反射功能。以下是一个 Java 示例:
<!-- 添加依赖到 pom.xml -->
<dependency>
<groupId>io.grpc</groupId>
<artifactId>grpc-services</artifactId>
<version>${grpc.version}</version>
</dependency>
在服务启动时启用反射:
Server server = ServerBuilder.forPort(SERVER_PORT)
.addService(new HelloServiceImpl())
.addService(ProtoReflectionService.newInstance())
.build()
.start();
3.2 注册 gRPC 服务
启动 gRPC-Swagger 后,打开注册页面,输入必要的信息并点击“注册”按钮。gRPC-Swagger 会自动扫描可用的服务并返回成功注册的服务。
3.3 使用 Swagger UI 调用 gRPC 方法
注册服务后,可以通过 Swagger UI 查看 gRPC 服务。点击“Try it out”按钮可以直接测试 gRPC 方法。
4. 典型生态项目
4.1 gRPC-Gateway
gRPC-Gateway 是一个用于将 gRPC 服务暴露为 RESTful API 的工具。它可以将 gRPC 方法映射为 HTTP 端点,使得客户端可以通过 HTTP 请求访问 gRPC 服务。
4.2 Swagger UI
Swagger UI 是一个用于可视化 API 文档的工具。通过 Swagger UI,用户可以方便地查看 API 的定义、参数和示例请求。
4.3 protoc-gen-openapiv2
protoc-gen-openapiv2 是一个 protoc 插件,用于将 proto 文件编译为 Swagger 配置文件。通过这个插件,用户可以生成 Swagger UI 所需的配置文件。
通过这些生态项目,gRPC-Swagger 可以与现有的 gRPC 和 RESTful API 生态系统无缝集成,提供更强大的调试和文档功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00