Xpra项目在RHEL 10系统上的构建挑战与解决方案
Xpra作为一款优秀的远程桌面工具,在RHEL 10系统上的构建和部署遇到了一些技术挑战。本文将详细分析这些挑战以及开发团队采取的解决方案。
构建环境准备
开发团队最初基于CentOS的stream10-development分支进行构建准备。在构建脚本方面,需要对repo-build-scripts仓库进行必要的更新,特别是针对RHEL 10环境的适配工作。这些修改包括对构建环境的配置调整和依赖项处理逻辑的优化。
主要技术挑战
在构建过程中,团队遇到了几个关键性问题:
-
Xorg服务器开发包缺失:构建过程中出现无法安装xorg-x11-server-devel开发包的问题,这个包是构建Xpra所需的关键依赖项。
-
Xvfb服务缺失:RHEL 10默认不再包含Xvfb(X Virtual Frame Buffer)服务,这对Xpra的正常运行造成了影响。
-
Wayland兼容性问题:Xwayland在检测显示环境时存在混淆问题,特别是在用户已有图形会话的情况下。
解决方案与应对策略
针对上述问题,开发团队采取了多种解决方案:
-
替代运行方案:开发团队提供了基于Wayland的临时解决方案。用户可以先启动一个无头的Wayland显示服务,然后在其上运行Xwayland来获得X11显示环境,最后再启动Xpra。
-
自定义构建方案:对于需要完整功能的用户,建议自行构建Xorg服务器和dummy驱动。这虽然增加了复杂度,但能提供更完整的X11环境支持。
-
依赖包冲突解决:在构建过程中发现openh264编解码器包存在冲突,团队通过修改构建配置解决了这一问题。
构建优化与发布
经过多次调整和测试,团队成功为CentOS stream10和AlmaLinux 10系统提供了可用的beta版本。在AlmaLinux 10的构建过程中,团队通过启用EPEL仓库解决了xxhash依赖缺失的问题,最终完成了所有目标平台的构建工作。
使用建议
对于最终用户,在使用Xpra时需要注意:
- 在有图形会话的环境中,建议明确指定显示编号
- 考虑系统环境差异,可能需要调整启动参数
- 关注后续正式版本的发布,以获得更稳定的使用体验
这些解决方案不仅解决了当前的技术难题,也为未来在其他新系统上的适配工作积累了宝贵经验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00