Spark-Authorizer: 精细化控制Spark SQL权限管理
一、项目介绍
Spark-Authorizer是网易基于Apache Ranger开发的一款Spark SQL授权扩展插件,旨在为Apache Spark提供标准SQL级别的访问控制能力。它能够无缝集成到现有的Ranger系统中,利用存储级或SQL标准级的访问控制策略,来限制数据湖中的数据库、表以及分区等资源的访问权限。
主要特性:
- 存储级授权:通过HDFS的权限控制机制,实现数据与元数据一致性授权政策。
- SQL标准级授权:增强传统存储级授权功能,支持更细粒度的数据访问(如视图与列)。
二、项目快速启动
安装Spark Authorizer
方法一:Maven依赖
在你的pom.xml文件中添加以下依赖:
<dependency>
<groupId>com.netease.spark-authorizer</groupId>
<artifactId>spark-authorizer</artifactId>
<version>最新版本号</version>
</dependency>
替换最新版本号为你所需的版本号。
方法二:手动部署
下载对应版本的JAR包并复制到你的$SPARK_HOME/jars目录下:
cp target/spark-authorizer-<version>.jar $SPARK_HOME/jars
配置Ranger-Hive插件
参照Ranger-Hive插件安装指南,确保Ranger-Hive插件已在Apache Spark集群上正确部署及配置。
启用Spark Authorizer
编辑$SPARK_HOME/conf/spark-defaults.conf以启用RangerSparkSQLExtension:
spark.sql.extensions org.apache.ranger.authorization.spark.authorizer.RangerSparkSQLExtension
三、应用案例与最佳实践
案例展示
假设在一个大型数据分析平台中,不同的分析团队对数据有不同的读写权限要求。Spark-Authorizer可以帮助实施精细化的访问控制策略,比如,允许特定团队只能读取指定库中的部分表格,而不能修改它们。
最佳实践
-
统一权限管理:利用Ranger集中管理所有数据源的权限,包括HDFS、Hive、Spark等,保持权限的一致性和安全性。
-
性能优化考虑:在高并发场景下,合理规划权限检查逻辑可以避免过多的元数据查询操作,减少I/O开销。
四、典型生态项目
Spark-Authorizer作为Kyuubi的核心组件之一,支撑了其作为大规模SQL-on-Hadoop服务的基础架构。Kyuubi提供了类似MySQL的服务接口,使得用户可以通过标准的JDBC/ODBC连接器从任何客户端应用程序执行SQL语句,而无需了解底层的大数据基础设施细节。
以上步骤仅为一个简化的示例,具体部署时应遵循最新的官方文档指导进行操作,以保证系统的稳定性和安全性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00