Spark-Authorizer: 精细化控制Spark SQL权限管理
一、项目介绍
Spark-Authorizer是网易基于Apache Ranger开发的一款Spark SQL授权扩展插件,旨在为Apache Spark提供标准SQL级别的访问控制能力。它能够无缝集成到现有的Ranger系统中,利用存储级或SQL标准级的访问控制策略,来限制数据湖中的数据库、表以及分区等资源的访问权限。
主要特性:
- 存储级授权:通过HDFS的权限控制机制,实现数据与元数据一致性授权政策。
- SQL标准级授权:增强传统存储级授权功能,支持更细粒度的数据访问(如视图与列)。
二、项目快速启动
安装Spark Authorizer
方法一:Maven依赖
在你的pom.xml
文件中添加以下依赖:
<dependency>
<groupId>com.netease.spark-authorizer</groupId>
<artifactId>spark-authorizer</artifactId>
<version>最新版本号</version>
</dependency>
替换最新版本号
为你所需的版本号。
方法二:手动部署
下载对应版本的JAR包并复制到你的$SPARK_HOME/jars
目录下:
cp target/spark-authorizer-<version>.jar $SPARK_HOME/jars
配置Ranger-Hive插件
参照Ranger-Hive插件安装指南,确保Ranger-Hive插件已在Apache Spark集群上正确部署及配置。
启用Spark Authorizer
编辑$SPARK_HOME/conf/spark-defaults.conf
以启用RangerSparkSQLExtension:
spark.sql.extensions org.apache.ranger.authorization.spark.authorizer.RangerSparkSQLExtension
三、应用案例与最佳实践
案例展示
假设在一个大型数据分析平台中,不同的分析团队对数据有不同的读写权限要求。Spark-Authorizer可以帮助实施精细化的访问控制策略,比如,允许特定团队只能读取指定库中的部分表格,而不能修改它们。
最佳实践
-
统一权限管理:利用Ranger集中管理所有数据源的权限,包括HDFS、Hive、Spark等,保持权限的一致性和安全性。
-
性能优化考虑:在高并发场景下,合理规划权限检查逻辑可以避免过多的元数据查询操作,减少I/O开销。
四、典型生态项目
Spark-Authorizer作为Kyuubi的核心组件之一,支撑了其作为大规模SQL-on-Hadoop服务的基础架构。Kyuubi提供了类似MySQL的服务接口,使得用户可以通过标准的JDBC/ODBC连接器从任何客户端应用程序执行SQL语句,而无需了解底层的大数据基础设施细节。
以上步骤仅为一个简化的示例,具体部署时应遵循最新的官方文档指导进行操作,以保证系统的稳定性和安全性。
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript037RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0407arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript040GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。03CS-Books
🔥🔥超过1000本的计算机经典书籍、个人笔记资料以及本人在各平台发表文章中所涉及的资源等。书籍资源包括C/C++、Java、Python、Go语言、数据结构与算法、操作系统、后端架构、计算机系统知识、数据库、计算机网络、设计模式、前端、汇编以及校招社招各种面经~07openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0145
热门内容推荐
最新内容推荐
项目优选









