Spark-Authorizer: 精细化控制Spark SQL权限管理
一、项目介绍
Spark-Authorizer是网易基于Apache Ranger开发的一款Spark SQL授权扩展插件,旨在为Apache Spark提供标准SQL级别的访问控制能力。它能够无缝集成到现有的Ranger系统中,利用存储级或SQL标准级的访问控制策略,来限制数据湖中的数据库、表以及分区等资源的访问权限。
主要特性:
- 存储级授权:通过HDFS的权限控制机制,实现数据与元数据一致性授权政策。
- SQL标准级授权:增强传统存储级授权功能,支持更细粒度的数据访问(如视图与列)。
二、项目快速启动
安装Spark Authorizer
方法一:Maven依赖
在你的pom.xml文件中添加以下依赖:
<dependency>
<groupId>com.netease.spark-authorizer</groupId>
<artifactId>spark-authorizer</artifactId>
<version>最新版本号</version>
</dependency>
替换最新版本号为你所需的版本号。
方法二:手动部署
下载对应版本的JAR包并复制到你的$SPARK_HOME/jars目录下:
cp target/spark-authorizer-<version>.jar $SPARK_HOME/jars
配置Ranger-Hive插件
参照Ranger-Hive插件安装指南,确保Ranger-Hive插件已在Apache Spark集群上正确部署及配置。
启用Spark Authorizer
编辑$SPARK_HOME/conf/spark-defaults.conf以启用RangerSparkSQLExtension:
spark.sql.extensions org.apache.ranger.authorization.spark.authorizer.RangerSparkSQLExtension
三、应用案例与最佳实践
案例展示
假设在一个大型数据分析平台中,不同的分析团队对数据有不同的读写权限要求。Spark-Authorizer可以帮助实施精细化的访问控制策略,比如,允许特定团队只能读取指定库中的部分表格,而不能修改它们。
最佳实践
-
统一权限管理:利用Ranger集中管理所有数据源的权限,包括HDFS、Hive、Spark等,保持权限的一致性和安全性。
-
性能优化考虑:在高并发场景下,合理规划权限检查逻辑可以避免过多的元数据查询操作,减少I/O开销。
四、典型生态项目
Spark-Authorizer作为Kyuubi的核心组件之一,支撑了其作为大规模SQL-on-Hadoop服务的基础架构。Kyuubi提供了类似MySQL的服务接口,使得用户可以通过标准的JDBC/ODBC连接器从任何客户端应用程序执行SQL语句,而无需了解底层的大数据基础设施细节。
以上步骤仅为一个简化的示例,具体部署时应遵循最新的官方文档指导进行操作,以保证系统的稳定性和安全性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00