Spark-Authorizer: 精细化控制Spark SQL权限管理
一、项目介绍
Spark-Authorizer是网易基于Apache Ranger开发的一款Spark SQL授权扩展插件,旨在为Apache Spark提供标准SQL级别的访问控制能力。它能够无缝集成到现有的Ranger系统中,利用存储级或SQL标准级的访问控制策略,来限制数据湖中的数据库、表以及分区等资源的访问权限。
主要特性:
- 存储级授权:通过HDFS的权限控制机制,实现数据与元数据一致性授权政策。
- SQL标准级授权:增强传统存储级授权功能,支持更细粒度的数据访问(如视图与列)。
二、项目快速启动
安装Spark Authorizer
方法一:Maven依赖
在你的pom.xml
文件中添加以下依赖:
<dependency>
<groupId>com.netease.spark-authorizer</groupId>
<artifactId>spark-authorizer</artifactId>
<version>最新版本号</version>
</dependency>
替换最新版本号
为你所需的版本号。
方法二:手动部署
下载对应版本的JAR包并复制到你的$SPARK_HOME/jars
目录下:
cp target/spark-authorizer-<version>.jar $SPARK_HOME/jars
配置Ranger-Hive插件
参照Ranger-Hive插件安装指南,确保Ranger-Hive插件已在Apache Spark集群上正确部署及配置。
启用Spark Authorizer
编辑$SPARK_HOME/conf/spark-defaults.conf
以启用RangerSparkSQLExtension:
spark.sql.extensions org.apache.ranger.authorization.spark.authorizer.RangerSparkSQLExtension
三、应用案例与最佳实践
案例展示
假设在一个大型数据分析平台中,不同的分析团队对数据有不同的读写权限要求。Spark-Authorizer可以帮助实施精细化的访问控制策略,比如,允许特定团队只能读取指定库中的部分表格,而不能修改它们。
最佳实践
-
统一权限管理:利用Ranger集中管理所有数据源的权限,包括HDFS、Hive、Spark等,保持权限的一致性和安全性。
-
性能优化考虑:在高并发场景下,合理规划权限检查逻辑可以避免过多的元数据查询操作,减少I/O开销。
四、典型生态项目
Spark-Authorizer作为Kyuubi的核心组件之一,支撑了其作为大规模SQL-on-Hadoop服务的基础架构。Kyuubi提供了类似MySQL的服务接口,使得用户可以通过标准的JDBC/ODBC连接器从任何客户端应用程序执行SQL语句,而无需了解底层的大数据基础设施细节。
以上步骤仅为一个简化的示例,具体部署时应遵循最新的官方文档指导进行操作,以保证系统的稳定性和安全性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









