PlexTraktSync项目中使用Ofelia调度器的最佳实践
背景介绍
PlexTraktSync是一个用于同步Plex媒体库与Trakt.tv服务的工具。在实际部署中,用户经常需要设置定时任务来自动执行同步操作。Ofelia是一个基于Docker的作业调度工具,常被用来管理PlexTraktSync的定时任务。
常见配置问题分析
在配置Ofelia调度器与PlexTraktSync协同工作时,开发者经常会遇到"找不到容器"的错误。这通常是由于Docker Compose配置中的一些细节处理不当导致的。
典型错误表现
当查看Ofelia调度器的日志时,可能会看到如下错误信息:
ERROR [Job "plextraktsync"] Finished in "963.091µs", failed: true, skipped: false, error: No such container: plextraktsync
问题根源
这种错误通常源于以下几个配置问题:
-
Docker Compose Profile使用不当:如果在PlexTraktSync服务配置中启用了profile功能但未正确激活,会导致容器无法被Ofelia发现。
-
容器命名不一致:Ofelia配置中指定的容器名称必须与Docker Compose中定义的服务名称完全匹配。
-
容器生命周期管理:Ofelia只能调度当前正在运行的容器,如果目标容器未运行或已停止,调度将失败。
解决方案与最佳实践
1. 简化配置方案
对于大多数用户,最简单的解决方案是移除profile配置,确保容器始终可用:
plextraktsync:
image: ghcr.io/taxel/plextraktsync
command: sync
container_name: plextraktsync
volumes:
- /configs/mediarr/plextraktsync:/app/config
environment:
- PUID=1000
- PGID=1000
depends_on:
- plex
2. 正确使用Profile功能
如果确实需要使用profile功能,必须确保在启动服务时显式激活对应的profile:
docker-compose --profile schedule up -d
3. Ofelia配置优化
建议为Ofelia指定具体版本而非latest标签,避免因版本更新导致兼容性问题:
scheduler:
image: mcuadros/ofelia:0.3.4
container_name: scheduler
command: daemon --docker
volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro
多服务器同步配置示例
以下是一个支持多服务器同步的完整配置示例:
version: '3'
services:
plextraktsync:
image: ghcr.io/taxel/plextraktsync
container_name: plextraktsync
volumes:
- ./config:/app/config
environment:
- PUID=1000
- PGID=1000
scheduler:
image: mcuadros/ofelia:0.3.4
container_name: scheduler
command: daemon --docker
volumes:
- /var/run/docker.sock:/var/run/docker.sock:ro
labels:
ofelia.job-run.movies.schedule: "0 6,18 * * *"
ofelia.job-run.movies.container: "plextraktsync"
ofelia.job-run.movies.command: "--server '电影服务器' sync"
ofelia.job-run.tvshows.schedule: "0 12,0 * * *"
ofelia.job-run.tvshows.container: "plextraktsync"
ofelia.job-run.tvshows.command: "--server '电视剧服务器' sync"
实施建议
-
版本控制:为所有Docker镜像指定具体版本号,避免使用latest标签。
-
日志监控:设置日志监控机制,确保能及时发现调度失败的情况。
-
权限管理:确保Ofelia容器有足够的权限访问Docker守护进程。
-
测试验证:在正式部署前,先使用较短的调度间隔进行测试验证。
通过遵循这些最佳实践,可以确保PlexTraktSync与Ofelia调度器的稳定协同工作,实现自动化媒体库同步。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









