Sentence Transformers v4.0.1:跨编码器训练重构与性能提升
项目简介
Sentence Transformers是一个基于Transformer架构的开源库,专门用于生成高质量的句子、段落和图像嵌入。该项目由UKPLab团队维护,广泛应用于信息检索、语义搜索、问答系统等自然语言处理任务。最新发布的v4.0.1版本带来了跨编码器(Cross Encoder)训练流程的重大重构,显著提升了模型训练效率和性能。
跨编码器训练架构重构
v4.0.1版本最核心的改进是对跨编码器(又称重排序器)训练流程的全面重构。新的训练架构采用了模块化设计,主要由五个关键组件构成:
-
数据集组件:使用Hugging Face的Dataset和DatasetDict类替代传统的InputExample列表,支持更高效的数据处理和共享。数据集可以包含多个文本列,这些列将按顺序传递给相应的损失函数。
-
损失函数:引入了11种新的损失函数,包括BinaryCrossEntropyLoss、LambdaLoss、ListNetLoss等,支持单损失函数或多数据集场景下的损失函数字典配置。
-
训练参数:通过CrossEncoderTrainingArguments类(继承自transformers的TrainingArguments)提供对训练细节的精细控制。
-
评估器:可选组件,支持在评估数据集上使用损失函数或SentenceEvaluator进行评估。
-
训练器:全新的CrossEncoderTrainer类,基于transformers的Trainer实现,简化了训练流程。
关键技术改进
-
多GPU训练支持:新增对数据并行(DP)和分布式数据并行(DDP)的支持,大幅提升训练速度。
-
混合精度训练:引入bf16训练支持,在保持模型精度的同时减少内存占用。
-
训练过程可视化:改进的损失日志记录功能,配合内置的Weights and Biases、TensorBoard等回调支持,使训练过程更加透明。
-
梯度优化:支持梯度检查点和梯度累积技术,有效缓解大模型训练中的显存压力。
-
模型管理:增强的模型卡生成功能,自动记录训练配置和超参数,便于模型共享和复现。
-
训练恢复:支持从检查点恢复训练,提高长时间训练任务的可靠性。
实际应用效果
在实际应用中,经过微调的跨编码器模型表现出显著优势。例如,在GooAQ数据集上微调的模型,在仅30分钟到1小时的训练后,性能就大幅超越通用目的的预训练模型。这证明了针对特定领域数据进行微调的价值,即使数据本身属于通用领域。
其他改进
-
评估器优化:为InformationRetrievalEvaluator添加了进度条显示功能,提升用户体验。
-
训练效率:用RandomSampler替代SubsetRandomSampler作为默认批采样器,减少了内存使用并提高了训练速度。
-
模型兼容性:增强了对非对称模型的支持,修复了相关评估器和模型卡生成的问题。
-
CLIP模型改进:为CLIP模型添加了截断功能和序列长度设置支持。
开发者建议
对于新项目,建议直接使用新的Trainer-based训练方法。虽然旧的CrossEncoder.fit方法仍然可用(内部已转为使用CrossEncoderTrainer),但新方法提供了更丰富的功能和更好的性能。
总结
Sentence Transformers v4.0.1通过重构跨编码器训练流程,为开发者提供了更强大、更灵活的工具集。无论是多GPU训练支持、混合精度训练,还是改进的评估和可视化功能,都显著提升了模型开发和微调的效率。对于需要进行语义相关性任务的项目,这一版本无疑是一个值得升级的选择。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00