Keras MeanIoU指标实现问题分析与修复
2025-04-30 21:37:16作者:劳婵绚Shirley
在图像分割任务中,IoU(Intersection over Union)是一个常用的评估指标。Keras框架提供了MeanIoU指标来计算多类别分割的平均IoU值。然而,在实际使用中发现Keras的MeanIoU实现存在一些计算准确性问题,本文将深入分析这些问题及其解决方案。
问题现象
开发者在使用Keras的MeanIoU指标时发现,它与自定义实现的IoU计算结果存在明显差异。具体表现为:
- 当数据量较小时,两种方法结果相近
- 随着数据量增加,结果差异逐渐增大
- 在训练过程中,两种指标曲线出现明显分歧
问题根源分析
通过深入代码分析和测试,发现问题主要出在两个方面:
1. 混淆矩阵累加精度问题
Keras的MeanIoU实现中,混淆矩阵的累加使用了浮点数运算。当数据量较大时,浮点数精度不足导致累加结果出现偏差。例如:
Cell (0, 0): manual = 16778371, keras sum = 16778372.0
2. 散点图(scatter)操作类型问题
在构建混淆矩阵时,Keras使用了scatter操作,但传入的值类型与预期不符。原始代码将值转换为浮点数,而实际上应该使用整数类型:
# 原始问题代码
values = ops.cast(values, dtype=self.dtype) # 转换为浮点数
# 修复后代码
values = ops.cast(values, dtype='int64') # 转换为整数
解决方案
针对上述问题,提出了以下修复方案:
-
强制使用整数类型:在计算混淆矩阵时,明确指定使用int64类型,避免浮点数精度问题
-
优化累加逻辑:确保在累加混淆矩阵时保持整数运算,防止精度损失
修复后的关键代码修改如下:
current_cm = confusion_matrix(
y_true,
y_pred,
self.num_classes,
weights=sample_weight,
dtype='int64', # 明确指定整数类型
)
验证结果
通过以下方法验证修复效果:
- 与scikit-learn的confusion_matrix结果对比
- 自定义实现的混淆矩阵累加验证
- 不同数据量下的稳定性测试
测试结果表明,修复后的MeanIoU指标:
- 与小数据量下的自定义实现结果一致
- 大数据量下不再出现累加偏差
- 训练过程中的指标曲线更加稳定可靠
最佳实践建议
基于此问题的分析,建议开发者在实现自定义指标时:
- 注意数值类型的正确选择,特别是涉及大量累加运算时
- 对于分类任务,优先使用整数类型处理混淆矩阵
- 实现交叉验证机制,确保自定义指标与标准实现的一致性
- 对于关键指标,考虑多种实现方式的对比验证
此问题的修复不仅提高了MeanIoU指标的准确性,也为Keras中其他类似指标的实现提供了重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
311
2.72 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
638
242
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
469
Ascend Extension for PyTorch
Python
148
175
暂无简介
Dart
604
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
226
81
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
363
2.99 K
React Native鸿蒙化仓库
JavaScript
236
310