首页
/ Steam Insight 模板使用教程

Steam Insight 模板使用教程

2024-08-07 22:42:22作者:沈韬淼Beryl

项目介绍

Steam Insight 是一个基于 Vercel 和 Serverless TiDB 的 Web 应用模板,旨在帮助用户分析与 Steam 平台相关的数据。通过这个模板,用户可以访问实时可视化仪表板,深入了解 Steam 用户活动、游戏销售等数据。该项目利用 TiDB Cloud Data API 进行数据访问和操作,为游戏行业分析师和数据科学家提供了一个强大的工具。

项目快速启动

环境准备

在开始之前,请确保你已经安装了以下工具:

  • Node.js (推荐版本 14.x 或更高)
  • npm 或 yarn

克隆项目

首先,克隆项目到本地:

git clone https://github.com/pingcap/steam-insight-template.git
cd steam-insight-template

安装依赖

使用 npm 或 yarn 安装项目依赖:

npm install
# 或者使用 yarn
yarn install

启动开发服务器

运行以下命令启动开发服务器:

npm run dev
# 或者使用 yarn
yarn dev

打开浏览器,访问 http://localhost:3000,你将看到应用的运行界面。

应用案例和最佳实践

数据分析

Steam Insight 提供了一个强大的数据分析平台,用户可以通过自定义查询来分析 Steam 平台上的用户活动和游戏销售数据。例如,你可以查询特定时间段内的游戏销售趋势,或者分析用户在不同游戏上的活跃度。

实时监控

利用 TiDB 的实时数据处理能力,Steam Insight 可以提供实时监控功能,帮助用户及时了解 Steam 平台的最新动态。这对于游戏开发者、市场分析师和数据科学家来说是一个非常有价值的工具。

典型生态项目

TiDB Cloud

TiDB Cloud 是一个云原生的分布式 SQL 数据库,提供无与伦比的扩展性和高可用性。它与 Vercel 结合,使得 Steam Insight 能够快速、高效地处理和分析大量数据。

Vercel

Vercel 是一个流行的云平台,用于托管和部署 Web 应用。它提供了简单易用的部署流程和强大的前端基础设施,使得 Steam Insight 能够快速上线并稳定运行。

通过这些生态项目的支持,Steam Insight 提供了一个完整的解决方案,帮助用户深入分析 Steam 平台的数据,从而做出更明智的决策。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8