PyMC 项目技术文档
2024-12-23 14:58:41作者:董斯意
1. 安装指南
安装环境要求
- Python 3.7 或更高版本
- 推荐使用 Anaconda 或 Miniconda 进行环境管理
安装步骤
-
使用 pip 安装:
pip install pymc
-
使用 conda 安装:
conda install -c conda-forge pymc
-
验证安装: 安装完成后,可以通过以下命令验证是否安装成功:
import pymc as pm print(pm.__version__)
2. 项目使用说明
项目简介
PyMC 是一个用于贝叶斯统计建模的 Python 包,专注于高级马尔可夫链蒙特卡罗(MCMC)和变分推断(VI)算法。其灵活性和可扩展性使其适用于大量问题。
主要功能
- 直观的模型指定语法:例如,
x ~ N(0,1)
可以翻译为x = Normal('x',0,1)
。 - 强大的采样算法:如 No U-Turn Sampler (NUTS),允许处理具有数千个参数的复杂模型。
- 变分推断:如 ADVI,用于快速近似后验估计,以及适用于大数据集的 mini-batch ADVI。
- 依赖 PyTensor:提供计算优化、动态 C 或 JAX 编译、NumPy 广播和高级索引、线性代数运算以及简单的可扩展性。
- 透明支持缺失值插补。
示例:线性回归
以下是一个简单的线性回归示例,用于预测植物生长基于不同的环境变量。
import pymc as pm
# 生成数据
seed = 42
x_dist = pm.Normal.dist(shape=(100, 3))
x_data = pm.draw(x_dist, random_seed=seed)
# 定义坐标值
coords = {
"trial": range(100),
"features": ["sunlight hours", "water amount", "soil nitrogen"],
}
# 定义生成模型
with pm.Model(coords=coords) as generative_model:
x = pm.Data("x", x_data, dims=["trial", "features"])
betas = pm.Normal("betas", dims="features")
sigma = pm.HalfNormal("sigma")
mu = x @ betas
plant_growth = pm.Normal("plant growth", mu, sigma, dims="trial")
# 生成数据
fixed_parameters = {"betas": [5, 20, 2], "sigma": 0.5}
with pm.do(generative_model, fixed_parameters) as synthetic_model:
idata = pm.sample_prior_predictive(random_seed=seed)
synthetic_y = idata.prior["plant growth"].sel(draw=0, chain=0)
# 推断参数
with pm.observe(generative_model, {"plant growth": synthetic_y}) as inference_model:
idata = pm.sample(random_seed=seed)
summary = pm.stats.summary(idata, var_names=["betas", "sigma"])
print(summary)
3. 项目 API 使用文档
主要 API
pm.Model()
:定义贝叶斯模型。pm.Normal()
:定义正态分布。pm.HalfNormal()
:定义半正态分布。pm.Data()
:定义数据变量。pm.sample()
:从模型中采样。pm.sample_prior_predictive()
:从先验预测分布中采样。pm.sample_posterior_predictive()
:从后验预测分布中采样。
示例
with pm.Model() as model:
x = pm.Normal('x', mu=0, sigma=1)
y = pm.Normal('y', mu=x, sigma=1)
trace = pm.sample(1000)
4. 项目安装方式
使用 pip 安装
pip install pymc
使用 conda 安装
conda install -c conda-forge pymc
验证安装
import pymc as pm
print(pm.__version__)
通过以上步骤,您可以成功安装并开始使用 PyMC 进行贝叶斯统计建模。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8