PyMC 项目技术文档
2024-12-23 21:31:09作者:董斯意
1. 安装指南
安装环境要求
- Python 3.7 或更高版本
- 推荐使用 Anaconda 或 Miniconda 进行环境管理
安装步骤
-
使用 pip 安装:
pip install pymc
-
使用 conda 安装:
conda install -c conda-forge pymc
-
验证安装: 安装完成后,可以通过以下命令验证是否安装成功:
import pymc as pm print(pm.__version__)
2. 项目使用说明
项目简介
PyMC 是一个用于贝叶斯统计建模的 Python 包,专注于高级马尔可夫链蒙特卡罗(MCMC)和变分推断(VI)算法。其灵活性和可扩展性使其适用于大量问题。
主要功能
- 直观的模型指定语法:例如,
x ~ N(0,1)
可以翻译为x = Normal('x',0,1)
。 - 强大的采样算法:如 No U-Turn Sampler (NUTS),允许处理具有数千个参数的复杂模型。
- 变分推断:如 ADVI,用于快速近似后验估计,以及适用于大数据集的 mini-batch ADVI。
- 依赖 PyTensor:提供计算优化、动态 C 或 JAX 编译、NumPy 广播和高级索引、线性代数运算以及简单的可扩展性。
- 透明支持缺失值插补。
示例:线性回归
以下是一个简单的线性回归示例,用于预测植物生长基于不同的环境变量。
import pymc as pm
# 生成数据
seed = 42
x_dist = pm.Normal.dist(shape=(100, 3))
x_data = pm.draw(x_dist, random_seed=seed)
# 定义坐标值
coords = {
"trial": range(100),
"features": ["sunlight hours", "water amount", "soil nitrogen"],
}
# 定义生成模型
with pm.Model(coords=coords) as generative_model:
x = pm.Data("x", x_data, dims=["trial", "features"])
betas = pm.Normal("betas", dims="features")
sigma = pm.HalfNormal("sigma")
mu = x @ betas
plant_growth = pm.Normal("plant growth", mu, sigma, dims="trial")
# 生成数据
fixed_parameters = {"betas": [5, 20, 2], "sigma": 0.5}
with pm.do(generative_model, fixed_parameters) as synthetic_model:
idata = pm.sample_prior_predictive(random_seed=seed)
synthetic_y = idata.prior["plant growth"].sel(draw=0, chain=0)
# 推断参数
with pm.observe(generative_model, {"plant growth": synthetic_y}) as inference_model:
idata = pm.sample(random_seed=seed)
summary = pm.stats.summary(idata, var_names=["betas", "sigma"])
print(summary)
3. 项目 API 使用文档
主要 API
pm.Model()
:定义贝叶斯模型。pm.Normal()
:定义正态分布。pm.HalfNormal()
:定义半正态分布。pm.Data()
:定义数据变量。pm.sample()
:从模型中采样。pm.sample_prior_predictive()
:从先验预测分布中采样。pm.sample_posterior_predictive()
:从后验预测分布中采样。
示例
with pm.Model() as model:
x = pm.Normal('x', mu=0, sigma=1)
y = pm.Normal('y', mu=x, sigma=1)
trace = pm.sample(1000)
4. 项目安装方式
使用 pip 安装
pip install pymc
使用 conda 安装
conda install -c conda-forge pymc
验证安装
import pymc as pm
print(pm.__version__)
通过以上步骤,您可以成功安装并开始使用 PyMC 进行贝叶斯统计建模。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K