PyMC 项目技术文档
2024-12-23 04:42:24作者:董斯意
1. 安装指南
安装环境要求
- Python 3.7 或更高版本
- 推荐使用 Anaconda 或 Miniconda 进行环境管理
安装步骤
-
使用 pip 安装:
pip install pymc -
使用 conda 安装:
conda install -c conda-forge pymc -
验证安装: 安装完成后,可以通过以下命令验证是否安装成功:
import pymc as pm print(pm.__version__)
2. 项目使用说明
项目简介
PyMC 是一个用于贝叶斯统计建模的 Python 包,专注于高级马尔可夫链蒙特卡罗(MCMC)和变分推断(VI)算法。其灵活性和可扩展性使其适用于大量问题。
主要功能
- 直观的模型指定语法:例如,
x ~ N(0,1)可以翻译为x = Normal('x',0,1)。 - 强大的采样算法:如 No U-Turn Sampler (NUTS),允许处理具有数千个参数的复杂模型。
- 变分推断:如 ADVI,用于快速近似后验估计,以及适用于大数据集的 mini-batch ADVI。
- 依赖 PyTensor:提供计算优化、动态 C 或 JAX 编译、NumPy 广播和高级索引、线性代数运算以及简单的可扩展性。
- 透明支持缺失值插补。
示例:线性回归
以下是一个简单的线性回归示例,用于预测植物生长基于不同的环境变量。
import pymc as pm
# 生成数据
seed = 42
x_dist = pm.Normal.dist(shape=(100, 3))
x_data = pm.draw(x_dist, random_seed=seed)
# 定义坐标值
coords = {
"trial": range(100),
"features": ["sunlight hours", "water amount", "soil nitrogen"],
}
# 定义生成模型
with pm.Model(coords=coords) as generative_model:
x = pm.Data("x", x_data, dims=["trial", "features"])
betas = pm.Normal("betas", dims="features")
sigma = pm.HalfNormal("sigma")
mu = x @ betas
plant_growth = pm.Normal("plant growth", mu, sigma, dims="trial")
# 生成数据
fixed_parameters = {"betas": [5, 20, 2], "sigma": 0.5}
with pm.do(generative_model, fixed_parameters) as synthetic_model:
idata = pm.sample_prior_predictive(random_seed=seed)
synthetic_y = idata.prior["plant growth"].sel(draw=0, chain=0)
# 推断参数
with pm.observe(generative_model, {"plant growth": synthetic_y}) as inference_model:
idata = pm.sample(random_seed=seed)
summary = pm.stats.summary(idata, var_names=["betas", "sigma"])
print(summary)
3. 项目 API 使用文档
主要 API
pm.Model():定义贝叶斯模型。pm.Normal():定义正态分布。pm.HalfNormal():定义半正态分布。pm.Data():定义数据变量。pm.sample():从模型中采样。pm.sample_prior_predictive():从先验预测分布中采样。pm.sample_posterior_predictive():从后验预测分布中采样。
示例
with pm.Model() as model:
x = pm.Normal('x', mu=0, sigma=1)
y = pm.Normal('y', mu=x, sigma=1)
trace = pm.sample(1000)
4. 项目安装方式
使用 pip 安装
pip install pymc
使用 conda 安装
conda install -c conda-forge pymc
验证安装
import pymc as pm
print(pm.__version__)
通过以上步骤,您可以成功安装并开始使用 PyMC 进行贝叶斯统计建模。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
498
3.65 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
309
134
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
151
882