Async-profiler内存分配追踪功能优化:解决nativemem未捕获全部内存分配的问题
在性能分析工具Async-profiler的最新版本中,开发团队修复了一个关于内存分配追踪的重要问题。该问题导致工具在nativemem模式下无法捕获某些特定的内存分配路径,影响了内存分析结果的完整性。
问题背景
Async-profiler的nativemem功能旨在追踪应用程序中的所有内存分配操作。然而,用户报告在某些Rust应用程序中,部分内存分配栈并未被正确捕获。通过对比jemalloc/jeprof工具的分析结果,发现Async-profiler遗漏了某些关键分配路径。
典型的未被捕获的分配栈包括:
- 通过
__GI___libc_malloc路径的分配 - 通过
posix_memalign系统调用的分配
这些遗漏的分配路径中,有些甚至是应用程序中最主要的内存分配来源。
技术原因分析
经过深入调查,发现存在两个根本原因:
-
特殊分配函数未拦截:Async-profiler原先未拦截某些内存分配函数,如
posix_memalign等系统调用。这些函数提供了不同于标准malloc的内存分配接口。 -
重定位表修补不完整:工具在修补函数入口时,只处理了
.rela.plt或.rela.dyn段中的一个,而某些函数可能同时在这两个段中被引用。这导致部分函数调用未被正确拦截。
解决方案
开发团队通过以下改进解决了这些问题:
-
扩展拦截范围:增加了对
posix_memalign等特殊内存分配函数的拦截支持,确保覆盖所有可能的内存分配路径。 -
完善重定位处理:改进了重定位表的修补逻辑,确保同时处理函数在所有相关段中的引用,不遗漏任何调用路径。
验证与效果
修复后,测试确认nativemem功能现在能够正确捕获所有内存分配操作,包括之前遗漏的通过特殊分配函数和复杂调用路径的内存分配。这使得Async-profiler的内存分析结果更加完整准确,特别是在Rust等现代语言编写的应用程序中。
对用户的意义
这一改进使得开发者可以:
- 获得更完整的内存分配画像
- 准确识别所有内存热点
- 在Rust等语言环境中获得与jemalloc相当的分析能力
- 无需依赖多个工具交叉验证
对于性能敏感型应用,特别是使用现代系统编程语言开发的项目,这一改进显著提升了内存分析的可信度和实用性。
最佳实践建议
用户在使用nativemem功能时,建议:
- 确保使用最新版本的Async-profiler
- 对于复杂应用,可同时收集CPU和内存分析数据
- 关注不同分配路径的性能特征
- 在Rust项目中特别注意标准库和第三方crate的内存使用模式
这一改进使Async-profiler在内存分析领域的能力得到显著提升,为开发者提供了更强大的性能诊断工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00