Async-profiler内存分配追踪功能优化:解决nativemem未捕获全部内存分配的问题
在性能分析工具Async-profiler的最新版本中,开发团队修复了一个关于内存分配追踪的重要问题。该问题导致工具在nativemem模式下无法捕获某些特定的内存分配路径,影响了内存分析结果的完整性。
问题背景
Async-profiler的nativemem功能旨在追踪应用程序中的所有内存分配操作。然而,用户报告在某些Rust应用程序中,部分内存分配栈并未被正确捕获。通过对比jemalloc/jeprof工具的分析结果,发现Async-profiler遗漏了某些关键分配路径。
典型的未被捕获的分配栈包括:
- 通过
__GI___libc_malloc
路径的分配 - 通过
posix_memalign
系统调用的分配
这些遗漏的分配路径中,有些甚至是应用程序中最主要的内存分配来源。
技术原因分析
经过深入调查,发现存在两个根本原因:
-
特殊分配函数未拦截:Async-profiler原先未拦截某些内存分配函数,如
posix_memalign
等系统调用。这些函数提供了不同于标准malloc的内存分配接口。 -
重定位表修补不完整:工具在修补函数入口时,只处理了
.rela.plt
或.rela.dyn
段中的一个,而某些函数可能同时在这两个段中被引用。这导致部分函数调用未被正确拦截。
解决方案
开发团队通过以下改进解决了这些问题:
-
扩展拦截范围:增加了对
posix_memalign
等特殊内存分配函数的拦截支持,确保覆盖所有可能的内存分配路径。 -
完善重定位处理:改进了重定位表的修补逻辑,确保同时处理函数在所有相关段中的引用,不遗漏任何调用路径。
验证与效果
修复后,测试确认nativemem功能现在能够正确捕获所有内存分配操作,包括之前遗漏的通过特殊分配函数和复杂调用路径的内存分配。这使得Async-profiler的内存分析结果更加完整准确,特别是在Rust等现代语言编写的应用程序中。
对用户的意义
这一改进使得开发者可以:
- 获得更完整的内存分配画像
- 准确识别所有内存热点
- 在Rust等语言环境中获得与jemalloc相当的分析能力
- 无需依赖多个工具交叉验证
对于性能敏感型应用,特别是使用现代系统编程语言开发的项目,这一改进显著提升了内存分析的可信度和实用性。
最佳实践建议
用户在使用nativemem功能时,建议:
- 确保使用最新版本的Async-profiler
- 对于复杂应用,可同时收集CPU和内存分析数据
- 关注不同分配路径的性能特征
- 在Rust项目中特别注意标准库和第三方crate的内存使用模式
这一改进使Async-profiler在内存分析领域的能力得到显著提升,为开发者提供了更强大的性能诊断工具。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









