NGINX Prometheus Exporter中连接指标后缀差异问题解析
在监控NGINX服务器时,许多开发者会选择使用nginx-prometheus-exporter来采集指标数据。近期有用户反馈在使用过程中遇到了一个有趣的指标命名差异现象:通过curl直接访问exporter的/metrics端点时,看到的指标名称是nginx_connections_accepted,但在Prometheus和Grafana中查询时,却变成了nginx_connections_accepted_total。
问题现象分析
当直接访问exporter的HTTP端点时,返回的原始指标数据确实显示为:
# HELP nginx_connections_accepted Accepted client connections
# TYPE nginx_connections_accepted counter
nginx_connections_accepted 23
然而在Prometheus查询界面和Grafana仪表板中,开发者发现可用的指标名称自动加上了_total后缀。这种差异并非bug,而是Prometheus生态系统的设计特性。
技术原理剖析
这种现象源于Prometheus对计数器类型(metric type为counter)指标的处理机制:
-
指标类型转换规则:Prometheus客户端库会自动为所有计数器类型的指标添加
_total后缀,这是Prometheus指标命名规范的一部分。这种转换发生在指标被Prometheus服务器抓取并存储的过程中。 -
存储层处理:当使用某些兼容Prometheus的存储后端(如Mimir、Cortex或Thanos)时,这些系统可能会对指标名称进行额外的规范化处理,包括自动添加标准后缀。
-
查询一致性:这种自动转换确保了在整个Prometheus生态系统中,计数器类型指标具有一致的命名约定,便于识别和处理。
解决方案与实践建议
-
查询时使用完整名称:在Grafana仪表板或PromQL查询中,开发者应该使用带有
_total后缀的完整指标名称。 -
仪表板配置调整:如果使用预制的Grafana仪表板,可能需要更新面板中的查询语句,将指标引用从
nginx_connections_accepted改为nginx_connections_accepted_total。 -
指标类型认知:理解这种自动转换有助于开发者正确识别计数器类型的指标,因为
_total后缀通常就表示这是一个单调递增的计数器。
深入理解指标类型
Prometheus定义了四种主要的指标类型,每种类型都有其特定的命名和处理方式:
- Counter(计数器):表示单调递增的指标,通常以
_total结尾 - Gauge(仪表盘):表示可以任意增减的瞬时值
- Histogram(直方图):会产生
_bucket、_sum和_count后缀的指标 - Summary(摘要):会产生
_sum和_count后缀的指标
了解这些类型及其命名规范,可以帮助开发者更有效地使用Prometheus监控系统。
总结
在NGINX Prometheus Exporter的使用过程中遇到的指标名称差异现象,实际上是Prometheus生态系统正常工作的一部分。这种设计确保了指标类型的一致性和可识别性。开发者在构建监控系统和仪表板时,应该注意这种自动转换,并在查询中使用正确的指标名称。理解这些底层机制将有助于更有效地利用Prometheus进行系统监控和告警配置。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00