Async-profiler中使用内核跟踪点(tracepoint)的实践指南
背景介绍
Async-profiler作为一款强大的Java性能分析工具,除了支持常规的CPU和内存分析外,还提供了对Linux内核跟踪点(tracepoint)的支持。这为开发者提供了深入观察系统调用的能力,例如监控文件打开操作(sys_enter_open)等。然而在实际使用中,用户可能会遇到"Unsupported event type"的错误提示。
问题本质
这个问题的根源在于async-profiler需要通过debugfs文件系统解析跟踪点的符号名称。在Linux系统中,debugfs通常挂载在/sys/kernel/debug
目录下,而普通用户通常没有访问权限。即使使用sudo运行asprof启动器,解析过程仍然会在目标Java进程的上下文中进行,而不是在启动器的上下文中。
解决方案
临时解决方案
对于当前版本,可以采用手动解析跟踪点ID的方式:
- 首先获取特定跟踪点的ID:
sudo cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat/id
- 然后将获取到的ID用于分析命令:
asprof -e trace:[ID] --cstack dwarf -d 30 -f flamegraph.html [PID]
长期解决方案
最新版本的async-profiler已经修复了这个问题。现在用户可以直接使用:
sudo asprof -e syscalls:sys_enter_openat ...
即使目标Java进程运行在非特权用户下也能正常工作。
使用注意事项
- debugfs挂载检查:确保
/sys/kernel/debug/tracing
目录存在。如果不存在,需要先挂载debugfs:
mount -t debugfs none /sys/kernel/debug
-
系统调用选择:在现代glibc中,
open()
函数通常通过openat
系统调用实现,而非直接的open
。因此,如果syscalls:sys_enter_open
没有显示预期结果,可以尝试分析syscalls:sys_enter_openat
。 -
调用栈收集:建议配合
--cstack dwarf
参数使用,以获取更完整的调用栈信息。
技术原理深入
内核跟踪点是Linux内核中预定义的静态探测点,它们提供了低开销的内核活动监控能力。async-profiler通过perf_event_open系统调用接口与这些跟踪点交互。当指定跟踪点事件时,profiler会:
- 通过debugfs解析跟踪点符号名到具体ID
- 设置perf事件以捕获指定跟踪点的活动
- 将捕获的事件与Java调用栈关联
- 生成可视化的火焰图
最佳实践建议
- 对于生产环境,建议使用最新版本的async-profiler以获得更好的tracepoint支持
- 在分析文件操作时,同时监控open和openat以获得完整视图
- 考虑将debugfs挂载加入系统启动脚本,避免每次手动挂载
- 对于容器环境,需要确保容器有访问debugfs的权限
通过合理利用async-profiler的tracepoint功能,开发者可以获得系统调用层面的深度洞察,这对于诊断I/O相关性能问题特别有价值。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









