Async-profiler中使用内核跟踪点(tracepoint)的实践指南
背景介绍
Async-profiler作为一款强大的Java性能分析工具,除了支持常规的CPU和内存分析外,还提供了对Linux内核跟踪点(tracepoint)的支持。这为开发者提供了深入观察系统调用的能力,例如监控文件打开操作(sys_enter_open)等。然而在实际使用中,用户可能会遇到"Unsupported event type"的错误提示。
问题本质
这个问题的根源在于async-profiler需要通过debugfs文件系统解析跟踪点的符号名称。在Linux系统中,debugfs通常挂载在/sys/kernel/debug目录下,而普通用户通常没有访问权限。即使使用sudo运行asprof启动器,解析过程仍然会在目标Java进程的上下文中进行,而不是在启动器的上下文中。
解决方案
临时解决方案
对于当前版本,可以采用手动解析跟踪点ID的方式:
- 首先获取特定跟踪点的ID:
sudo cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat/id
- 然后将获取到的ID用于分析命令:
asprof -e trace:[ID] --cstack dwarf -d 30 -f flamegraph.html [PID]
长期解决方案
最新版本的async-profiler已经修复了这个问题。现在用户可以直接使用:
sudo asprof -e syscalls:sys_enter_openat ...
即使目标Java进程运行在非特权用户下也能正常工作。
使用注意事项
- debugfs挂载检查:确保
/sys/kernel/debug/tracing目录存在。如果不存在,需要先挂载debugfs:
mount -t debugfs none /sys/kernel/debug
-
系统调用选择:在现代glibc中,
open()函数通常通过openat系统调用实现,而非直接的open。因此,如果syscalls:sys_enter_open没有显示预期结果,可以尝试分析syscalls:sys_enter_openat。 -
调用栈收集:建议配合
--cstack dwarf参数使用,以获取更完整的调用栈信息。
技术原理深入
内核跟踪点是Linux内核中预定义的静态探测点,它们提供了低开销的内核活动监控能力。async-profiler通过perf_event_open系统调用接口与这些跟踪点交互。当指定跟踪点事件时,profiler会:
- 通过debugfs解析跟踪点符号名到具体ID
- 设置perf事件以捕获指定跟踪点的活动
- 将捕获的事件与Java调用栈关联
- 生成可视化的火焰图
最佳实践建议
- 对于生产环境,建议使用最新版本的async-profiler以获得更好的tracepoint支持
- 在分析文件操作时,同时监控open和openat以获得完整视图
- 考虑将debugfs挂载加入系统启动脚本,避免每次手动挂载
- 对于容器环境,需要确保容器有访问debugfs的权限
通过合理利用async-profiler的tracepoint功能,开发者可以获得系统调用层面的深度洞察,这对于诊断I/O相关性能问题特别有价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00