深度法线估算:自动为手绘角色着色的创新工具
这是由David Revoy创作的原始作品,仅允许非商业研究用途。
项目概述
Deep Normals是一个开放源代码项目,提供预先训练好的模型,用于一项在ECCV 2018研讨会中发表的研究论文:
“Deep Normal Estimation for Automatic Shading of Hand-Drawn Characters”
作者:Matis Hudon, Rafael Pagés, Mairéad Grogan, Aljosa Smolić
更多详细信息,请访问我们的项目网页。您还可以观看我们结果视频以了解实际应用效果。
此外,项目还进行了进一步发展,并在CVMP 2019上发表了新工作:
“Augmenting Hand-Drawn Art with Global Illumination Effects through Surface Inflation”
作者:Matis Hudon, Sebastian Lutz, Rafael Pages, Aljosa Smolic
并发布了一个带有地面真实正常映射和深度映射的新数据集,详情可见项目网页。
技术要求
本项目支持Docker环境以及Ubuntu 16.04本地运行。需要安装Cuda 9、Python3、Numpy、Tensorflow(GPU版)、opencv-python 和 TFlearn库。若不熟悉Docker,也可直接在本地按照指导安装相关依赖库进行操作。
使用方法
首先,从此处下载预训练模型并解压到Net/目录下。
要在本地运行代码:
python3 main.py
或指定自己的图像和对应的遮罩文件:
python3 main.py --lineart_path PathToYourImage --mask_path PathToCorrespondingMask
在Docker环境下运行:
sudo nvidia-docker run -v CodeDirectory/:/container/directory/ -it matishudon/dockerdeepn python3 /container/directory/main.py --docker_path /container/directory/
其中,CodeDirectory 是包含main.py的目录路径。
此外,项目还提供了一个简单的渲染器Interactive_Rendering.py,可以查看该脚本以获取更多信息。请注意,这个渲染器需要额外的颜色图像。请参考示例目录Pepper/。
数据集
用于这项工作的数据集(训练和测试)可在此链接下载。
引用
如果使用了该项目的模型、代码或数据集,请引用以下论文:
@inproceedings{hudon2018deep,
title={Deep Normal Estimation for Automatic Shading of Hand-Drawn Characters},
author={Hudon, Matis and Grogan, Mair{\'e}ad and Pag{\'e}s, Rafael and Smoli{\'c}, Aljo{\v{s}}a},
booktitle={European Conference on Computer Vision},
pages={246--262},
year={2018},
organization={Springer}
}
致谢
感谢David Revoy和Ester Huete分享他们的原创作品。该出版物得到了Science Foundation Ireland (SFI) 15/RP/2776号资助的支持。我们非常感谢NVIDIA公司提供的用于此研究的Titan Xp GPU捐赠。
许可证
版权 © 2018 Matis Hudon, Trinity College Dublin
请仔细阅读以下条款和条件以及任何伴随的文档,然后再下载和/或使用此软件及其相关文档(“软件”)。
作者在此授予你一个非排他性、不可转让、免费的权利,复制、修改、合并、发布、分发和再许可此软件,仅为执行非商业科学研究、非商业教育或非商业艺术项目的目的。
其他任何形式的使用,特别是用于商业目的的使用均被禁止。这包括但不限于,在商业产品中包含,用于商业服务,或为了商业目的生产其他艺术品。
该软件“按原样”提供,没有任何形式的明示或暗示的保证,包括但不限于对适销性、特定目的的适用性和不侵权的保证。在任何情况下,作者或版权所有者都不对因软件或与之相关的使用或其他交易而产生的任何索赔、损害或其他责任负责。
作者保留随时更新、修改或停止软件的权利,而不提供维护服务、更新服务、潜在缺陷通知或缺陷修正。然而,作者保留更新、修改或停止软件的权利。
上述版权声明和此许可通知应包含在所有副本或软件的实质部分中。在使用该软件进行研究并撰写文档和论文时,同意引用《深度法线估算:手绘角色自动着色》论文。

通过使用此软件,即表明您接受这些条款和条件。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C099
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00