DonkeyCar项目训练过程中的TensorFlow/Python兼容性问题解析
2025-06-25 22:03:54作者:董斯意
问题背景
在DonkeyCar自动驾驶小车项目的使用过程中,用户在不同平台上遇到了训练命令donkey train --tub data执行失败的问题。该问题主要出现在Ubuntu 22.04 x86-64系统和Raspberry Pi 4B Bookworm系统上,但在robocarstore提供的RPi 4B预构建镜像上却能正常运行。
问题表现
用户在不同环境下的表现如下:
-
Ubuntu 22.04 x86-64系统
- Python 3.10.12环境:出现"Key image is not in available keys"错误
- Python 3.9.19环境:同样出现"Key image is not in available keys"错误
-
Raspberry Pi 4B Bookworm系统
- Python 3.11.2环境:出现相同的"Key image is not in available keys"错误
-
robocarstore预构建镜像
- Python 3.9.2环境:训练过程正常完成
问题分析
从错误信息来看,核心问题是TensorFlow在处理数据时无法找到预期的"image"键。这通常与以下因素有关:
- Python版本兼容性:DonkeyCar不同版本对Python版本有特定要求
- TensorFlow版本问题:TensorFlow与Python版本间的兼容性问题
- 数据集大小:过小的数据集可能导致训练过程中的异常
解决方案
经过验证,以下方案可以解决该问题:
-
升级到DonkeyCar 5.1.0版本
- 该版本明确要求Python版本≥3.11且≤3.12
- 解决了TensorFlow数据处理中的兼容性问题
-
使用推荐的Python环境
- 创建Python 3.11的conda虚拟环境
- 确保TensorFlow版本与Python版本匹配
-
确保足够的数据量
- 虽然小数据集在5.1.0版本下可以运行
- 但实际应用中建议使用至少1000条记录以上的数据集
实施步骤
-
安装Miniconda并创建Python 3.11环境:
conda create -n donkey python=3.11 conda activate donkey -
安装DonkeyCar 5.1.0版本:
pip install donkeycar[pc]==5.1.0 -
创建项目并训练模型:
donkey createcar --path ./mycar cd mycar donkey train --tub data
注意事项
-
即使训练过程能够完成,TensorFlow仍可能输出一些警告信息,如KeyError等,这些通常不会影响最终结果。
-
在实际应用中,建议:
- 使用更大规模的数据集进行训练
- 监控训练过程中的损失值变化
- 验证模型在实际运行中的表现
-
对于UI界面可能出现的"递归深度超出"问题,虽然当前无法复现,但仍需保持关注。
总结
DonkeyCar项目的训练过程对Python和TensorFlow版本有较高要求。通过使用DonkeyCar 5.1.0版本配合Python 3.11环境,可以有效解决训练过程中出现的兼容性问题。开发者在使用时应注意保持环境的一致性,并使用足够规模的数据集,以获得最佳的训练效果。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210