LLaMA-Factory项目中数据预处理导致样本数量骤减的原因分析
2025-05-02 14:29:30作者:董宙帆
在LLaMA-Factory项目进行大规模语言模型预训练时,用户反馈了一个常见但容易被忽视的现象:原始数据集包含388,472个样本,但经过预处理后仅剩下8,852个样本,数量减少了约98%。这种现象在大模型训练中其实并不罕见,但需要深入理解其背后的技术原理。
预训练中的样本打包机制
在LLaMA-Factory这类大模型训练框架中,预处理阶段会对原始文本数据进行特殊处理,其中最关键的是"样本打包"(example packing)技术。这种技术的主要目的是:
- 提高计算效率:将多个短文本拼接成一个接近上下文窗口长度的样本
- 减少填充(padding)浪费:避免因短文本导致的显存浪费
- 优化训练稳定性:保持每个batch的计算量相对均衡
影响样本数量的关键参数
在LLaMA-Factory项目中,以下几个参数会显著影响预处理后的样本数量:
- cutoff_len参数:设置为16,384时,系统会尽可能将多个短文本拼接至接近这个长度
- 预处理策略:默认会启用智能拼接算法,自动合并相关文本
- tokenizer配置:使用快速分词器可能影响最终的分词结果和打包策略
技术原理详解
当设置较大的cutoff_len(如16,384)时,预处理流水线会执行以下操作:
- 对每个原始样本进行分词
- 计算分词后的token长度
- 按照FIFO(先进先出)策略将短样本拼接至接近cutoff_len
- 丢弃极少数无法匹配长度要求的异常样本
例如,假设平均每个原始样本分词后长度为512,那么理论上一个打包后的样本可以容纳约32个原始样本(16384/512)。这与用户观察到的约44倍缩减(388472/8852≈44)基本吻合,说明系统正在高效地打包短文本。
实际训练中的考量
虽然预处理后样本数量显示减少,但实际上模型看到的token总量基本保持不变。训练时需要注意:
- 每个"打包样本"包含多个原始样本的内容
- 学习率等超参数需要针对打包后的batch结构进行调整
- 验证指标的计算方式可能需要相应修改
最佳实践建议
- 对于长文本数据集,可适当减小cutoff_len以减少打包比例
- 监控实际处理的token数量而非样本数量
- 在评估指标时考虑样本打包带来的影响
- 对于需要保持样本独立性的任务,可以禁用打包功能
理解这一机制对于高效利用LLaMA-Factory进行大规模语言模型训练至关重要,它不仅能显著提升训练效率,还能优化显存使用率,是处理海量文本数据的有效策略。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19