Caldera项目中动态添加能力到运行中任务的技术解析
2025-06-04 09:07:11作者:彭桢灵Jeremy
在自动化安全测试平台Caldera的实际使用中,任务(operation)的灵活性直接影响红队演练的效率。本文深入探讨Caldera平台中动态调整运行中任务的核心机制,特别是如何实现"热添加"能力(ability)这一关键技术特性。
动态任务调整的架构设计
Caldera采用微服务架构设计,其任务执行引擎具备实时配置更新的能力。当任务启动后,系统会维护一个动态的能力执行队列,而非静态的任务清单。这种设计使得平台可以接收来自控制端的增量式指令更新。
实现原理详解
-
实时通信通道
通过WebSocket保持控制端与agent的持久化连接,确保配置变更能实时推送至执行节点。当用户在UI界面点击"添加动作"按钮时,系统会通过这个通道将新的能力描述符(ability descriptor)注入到运行中的任务上下文。 -
能力热加载机制
每个能力在Caldera中都被建模为独立的YAML定义文件。系统运行时维护着一个能力注册表,当新增能力时:- 解析YAML文件生成能力对象
- 验证能力与当前任务的兼容性
- 将能力注册到任务执行队列
- 分发到相关agent执行
-
上下文保持技术
动态添加的能力可以共享原始任务的执行上下文,包括:- 已收集的目标信息
- 前期执行产生的临时变量
- 当前任务的访问凭证
典型应用场景
-
渐进式渗透测试
根据前期侦察结果动态追加安全测试模块,避免一次性加载所有可能用不到的能力。 -
应急响应演练
在模拟事件过程中临时加入新的检测规则,测试蓝队的实时响应能力。 -
多阶段任务衔接
在前阶段任务成功后,立即注入下一阶段所需的能力模块。
技术实现注意事项
-
版本兼容性检查
新增能力需要与当前运行的agent版本匹配,系统会自动过滤不兼容的能力项。 -
资源占用监控
动态添加能力可能导致内存和CPU使用量上升,平台内置了资源阈值保护机制。 -
执行顺序控制
通过优先级标记控制新增能力的执行顺序,支持前置插入和追加两种模式。
最佳实践建议
- 在添加新能力前,建议先通过"dry run"模式验证其可行性
- 对高频变动的任务建议设置资源使用警报阈值
- 复杂能力的添加建议配合使用Caldera的链式能力(chainable ability)特性
这种动态任务调整能力极大提升了Caldera在复杂对抗环境中的适应性,使红队可以像下围棋一样根据"战场"形势实时调整战术策略。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136