Kiln项目中结构化输出微调的最佳实践与思考
2025-06-24 04:48:13作者:翟萌耘Ralph
在Kiln项目中,针对OpenAI模型的微调工作涉及到一个关键的技术细节:如何正确处理结构化输出任务。本文将从技术实现角度深入分析当前方案的设计思路、潜在问题以及优化方向。
当前技术方案分析
Kiln项目目前采用了一种基于工具调用(task_response)的微调方案。该方案的核心特点是将结构化输出封装为工具调用的参数形式:
-
训练数据格式:系统自动将任务输出转换为工具调用格式,其中:
- 使用名为"task_response"的专用工具
- 结构化数据作为该工具的arguments参数传递
- 采用严格的JSON Schema进行参数校验
-
推理时调用:为保持一致性,推理时需要使用相同的工具调用格式:
- 必须声明task_response工具定义
- 设置tool_choice为required强制使用工具
- 从工具调用的arguments中解析最终输出
技术方案对比评估
与OpenAI官方推荐的其他结构化输出方案相比,当前实现存在以下特点:
-
工具调用 vs 响应格式:
- 工具调用方案提供更严格的Schema校验
- 但可能增加实现复杂度
- 在某些模型实现上可能存在兼容性问题
-
内容直接输出方案:
- 将JSON直接放入assistant的content字段
- 实现更简单直接
- 但缺乏内置的Schema验证机制
实践发现的问题
在实际应用中发现当前方案存在一些潜在问题:
-
模型行为不一致:
- 微调后的模型在推理时若格式不匹配可能出现异常
- 包括内容缺失、词语替换等非预期行为
-
跨模型兼容性:
- 某些开源模型实现(如Ollama、Qwen)对工具调用的支持不完善
- 导致在这些模型上效果不佳
-
性能差异:
- 初步测试显示,使用response_format方案时模型表现更好
- 特别是在tokenizer等精细任务上差异明显
优化方向建议
基于实践经验,建议考虑以下优化方向:
-
逐步迁移到response_format:
- 利用type: "json_object"实现结构化输出
- 简化实现流程
- 提高模型兼容性
-
保持Schema验证能力:
- 在应用层补充Schema验证逻辑
- 结合JSON Schema验证库确保输出质量
-
格式兼容性处理:
- 对已用task_response格式微调的模型
- 提供兼容层实现平滑过渡
-
性能评估指标:
- 建立结构化输出的量化评估标准
- 包括格式合规率、内容完整性等维度
实施建议
对于正在使用Kiln进行模型微调的用户,建议:
- 新项目优先考虑response_format方案
- 现有task_response项目可逐步测试迁移
- 关键任务应进行充分的AB测试
- 关注不同模型架构下的表现差异
通过持续优化结构化输出的处理方案,可以进一步提升Kiln项目在复杂任务上的实用性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178