Kiln项目中结构化输出微调的最佳实践与思考
2025-06-24 00:58:23作者:翟萌耘Ralph
在Kiln项目中,针对OpenAI模型的微调工作涉及到一个关键的技术细节:如何正确处理结构化输出任务。本文将从技术实现角度深入分析当前方案的设计思路、潜在问题以及优化方向。
当前技术方案分析
Kiln项目目前采用了一种基于工具调用(task_response)的微调方案。该方案的核心特点是将结构化输出封装为工具调用的参数形式:
-
训练数据格式:系统自动将任务输出转换为工具调用格式,其中:
- 使用名为"task_response"的专用工具
- 结构化数据作为该工具的arguments参数传递
- 采用严格的JSON Schema进行参数校验
-
推理时调用:为保持一致性,推理时需要使用相同的工具调用格式:
- 必须声明task_response工具定义
- 设置tool_choice为required强制使用工具
- 从工具调用的arguments中解析最终输出
技术方案对比评估
与OpenAI官方推荐的其他结构化输出方案相比,当前实现存在以下特点:
-
工具调用 vs 响应格式:
- 工具调用方案提供更严格的Schema校验
- 但可能增加实现复杂度
- 在某些模型实现上可能存在兼容性问题
-
内容直接输出方案:
- 将JSON直接放入assistant的content字段
- 实现更简单直接
- 但缺乏内置的Schema验证机制
实践发现的问题
在实际应用中发现当前方案存在一些潜在问题:
-
模型行为不一致:
- 微调后的模型在推理时若格式不匹配可能出现异常
- 包括内容缺失、词语替换等非预期行为
-
跨模型兼容性:
- 某些开源模型实现(如Ollama、Qwen)对工具调用的支持不完善
- 导致在这些模型上效果不佳
-
性能差异:
- 初步测试显示,使用response_format方案时模型表现更好
- 特别是在tokenizer等精细任务上差异明显
优化方向建议
基于实践经验,建议考虑以下优化方向:
-
逐步迁移到response_format:
- 利用type: "json_object"实现结构化输出
- 简化实现流程
- 提高模型兼容性
-
保持Schema验证能力:
- 在应用层补充Schema验证逻辑
- 结合JSON Schema验证库确保输出质量
-
格式兼容性处理:
- 对已用task_response格式微调的模型
- 提供兼容层实现平滑过渡
-
性能评估指标:
- 建立结构化输出的量化评估标准
- 包括格式合规率、内容完整性等维度
实施建议
对于正在使用Kiln进行模型微调的用户,建议:
- 新项目优先考虑response_format方案
- 现有task_response项目可逐步测试迁移
- 关键任务应进行充分的AB测试
- 关注不同模型架构下的表现差异
通过持续优化结构化输出的处理方案,可以进一步提升Kiln项目在复杂任务上的实用性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile012
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.34 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
80

暂无简介
Dart
537
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
994
588

仓颉编程语言测试用例。
Cangjie
34
64

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650