深入解析httpx工具中ja3_hash与jarm_hash参数在DSL表达式中的使用问题
在网络安全领域,指纹识别技术是识别目标服务特征的重要手段。projectdiscovery开发的httpx工具作为一款功能强大的HTTP探测工具,提供了ja3_hash和jarm_hash两种TLS指纹识别功能,但在实际使用中发现这些参数在DSL表达式中存在兼容性问题。
TLS指纹识别技术基础
ja3_hash和jarm_hash都是用于TLS协议指纹识别的技术。ja3_hash通过分析TLS握手过程中客户端发送的报文特征生成唯一标识,而jarm_hash则通过发送多种特殊构造的TLS握手包并分析服务器响应来生成指纹。这两种技术都能有效识别服务端或客户端的TLS实现特征。
httpx工具中的实现问题
最新版本的httpx(v1.6.5)虽然在命令行参数中支持ja3和jarm扫描功能,但在DSL表达式中却无法直接使用ja3_hash和jarm_hash这两个变量。工具文档显示这两个变量是存在的,但实际在DSL表达式中引用时会出现"参数未找到"的错误。
问题复现与分析
通过实际测试可以复现这个问题:当使用-jarm参数扫描目标(如google.com)时,工具能正确输出jarm指纹,但在DSL表达式中尝试使用jarm_hash变量进行匹配时却报错。这表明工具在内部实现上存在变量作用域不一致的问题——虽然计算了这些指纹值,但没有将它们暴露给DSL表达式引擎。
临时解决方案
目前有两种可行的临时解决方案:
- 直接调用jarm()函数并传入完整的目标地址和端口:
httpx -silent -u https://google.com -jarm -mdc 'jarm("google.com:443") == "指纹值"'
- 动态构造目标地址:
httpx -silent -u https://google.com -jarm -mdc 'jarm(replace(url, "https://", "") + ":" + port) == "指纹值"'
这两种方法都能绕过变量访问问题,通过显式调用jarm函数来获取指纹值。
技术影响与建议
这个问题影响了基于指纹的自动化检测流程。在修复之前,用户需要采用上述变通方案。从技术实现角度看,开发团队需要确保所有计算得到的元数据都能在DSL表达式中访问,保持接口的一致性。
对于安全研究人员,建议在使用指纹识别功能时:
- 先确认工具版本和功能支持情况
- 对于关键指纹匹配需求,采用显式函数调用方式
- 关注工具更新,及时获取修复版本
该问题的修复将显著提升httpx在TLS指纹识别场景下的易用性和一致性,使安全研究人员能更高效地开展服务工作识别和分类工作。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~067CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









