深入解析httpx工具中ja3_hash与jarm_hash参数在DSL表达式中的使用问题
在网络安全领域,指纹识别技术是识别目标服务特征的重要手段。projectdiscovery开发的httpx工具作为一款功能强大的HTTP探测工具,提供了ja3_hash和jarm_hash两种TLS指纹识别功能,但在实际使用中发现这些参数在DSL表达式中存在兼容性问题。
TLS指纹识别技术基础
ja3_hash和jarm_hash都是用于TLS协议指纹识别的技术。ja3_hash通过分析TLS握手过程中客户端发送的报文特征生成唯一标识,而jarm_hash则通过发送多种特殊构造的TLS握手包并分析服务器响应来生成指纹。这两种技术都能有效识别服务端或客户端的TLS实现特征。
httpx工具中的实现问题
最新版本的httpx(v1.6.5)虽然在命令行参数中支持ja3和jarm扫描功能,但在DSL表达式中却无法直接使用ja3_hash和jarm_hash这两个变量。工具文档显示这两个变量是存在的,但实际在DSL表达式中引用时会出现"参数未找到"的错误。
问题复现与分析
通过实际测试可以复现这个问题:当使用-jarm参数扫描目标(如google.com)时,工具能正确输出jarm指纹,但在DSL表达式中尝试使用jarm_hash变量进行匹配时却报错。这表明工具在内部实现上存在变量作用域不一致的问题——虽然计算了这些指纹值,但没有将它们暴露给DSL表达式引擎。
临时解决方案
目前有两种可行的临时解决方案:
- 直接调用jarm()函数并传入完整的目标地址和端口:
httpx -silent -u https://google.com -jarm -mdc 'jarm("google.com:443") == "指纹值"'
- 动态构造目标地址:
httpx -silent -u https://google.com -jarm -mdc 'jarm(replace(url, "https://", "") + ":" + port) == "指纹值"'
这两种方法都能绕过变量访问问题,通过显式调用jarm函数来获取指纹值。
技术影响与建议
这个问题影响了基于指纹的自动化检测流程。在修复之前,用户需要采用上述变通方案。从技术实现角度看,开发团队需要确保所有计算得到的元数据都能在DSL表达式中访问,保持接口的一致性。
对于安全研究人员,建议在使用指纹识别功能时:
- 先确认工具版本和功能支持情况
- 对于关键指纹匹配需求,采用显式函数调用方式
- 关注工具更新,及时获取修复版本
该问题的修复将显著提升httpx在TLS指纹识别场景下的易用性和一致性,使安全研究人员能更高效地开展服务工作识别和分类工作。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00