Danbooru项目中Bilibili动态帖子标题提取的技术实现
背景介绍
在Danbooru这个开源图像标签系统的开发过程中,开发团队需要处理来自不同平台的媒体内容。其中,来自Bilibili平台的动态帖子内容提取是一个重要功能。本文将详细介绍Danbooru项目如何实现从Bilibili动态中提取帖子标题的技术方案。
技术挑战
Bilibili平台的API设计较为复杂,特别是对于动态帖子内容的获取。常规的API调用无法直接获取到帖子的标题信息,需要通过特定的参数配置才能获得完整的数据结构。
解决方案
API请求参数调整
通过分析Bilibili的API响应结构,开发团队发现需要在请求中添加features=itemOpusStyle参数。这个参数会改变API返回的数据格式,使得标题信息出现在特定的JSON路径中。
响应数据结构解析
添加上述参数后,Bilibili API返回的JSON数据中,标题信息位于以下路径:
data.item.modules.module_dynamic.major.opus.title
这个路径表示:
- 最外层是
data对象 - 包含
item对象 - 其中
modules对象包含多个模块 module_dynamic模块包含动态内容major对象表示主要内容opus对象包含作品信息- 最终
title字段即为所需标题
实现示例
以下是一个典型的Bilibili动态帖子响应示例(简化版):
{
"code": 0,
"data": {
"item": {
"modules": {
"module_dynamic": {
"major": {
"opus": {
"title": "完成了!!",
"pics": [...],
"summary": {...}
}
}
}
}
}
}
}
在这个示例中,我们可以清晰地看到标题"完成了!!"位于预期的JSON路径中。
技术细节
-
参数重要性:
features=itemOpusStyle参数是关键,没有它API会返回不同的数据结构,导致无法获取标题。 -
错误处理:实现时需要处理API可能返回的不同状态码和错误信息,确保在异常情况下也能优雅降级。
-
性能考虑:额外的参数可能会增加API响应时间,需要评估对系统性能的影响。
-
兼容性:需要持续关注Bilibili API的更新,因为这种非标准参数可能会在未来版本中发生变化。
应用场景
这一技术实现使得Danbooru系统能够:
- 准确获取Bilibili动态的标题信息
- 为后续的内容分类和标签处理提供基础数据
- 改善用户体验,提供更完整的内容展示
总结
通过分析Bilibili API的特殊参数需求和响应数据结构,Danbooru项目成功实现了从Bilibili动态中提取帖子标题的功能。这一技术方案展示了如何通过深入研究第三方API的特性来解决特定的数据获取问题,为类似平台的内容集成提供了有价值的参考。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00