Danbooru项目中Bilibili动态帖子标题提取的技术实现
背景介绍
在Danbooru这个开源图像标签系统的开发过程中,开发团队需要处理来自不同平台的媒体内容。其中,来自Bilibili平台的动态帖子内容提取是一个重要功能。本文将详细介绍Danbooru项目如何实现从Bilibili动态中提取帖子标题的技术方案。
技术挑战
Bilibili平台的API设计较为复杂,特别是对于动态帖子内容的获取。常规的API调用无法直接获取到帖子的标题信息,需要通过特定的参数配置才能获得完整的数据结构。
解决方案
API请求参数调整
通过分析Bilibili的API响应结构,开发团队发现需要在请求中添加features=itemOpusStyle参数。这个参数会改变API返回的数据格式,使得标题信息出现在特定的JSON路径中。
响应数据结构解析
添加上述参数后,Bilibili API返回的JSON数据中,标题信息位于以下路径:
data.item.modules.module_dynamic.major.opus.title
这个路径表示:
- 最外层是
data对象 - 包含
item对象 - 其中
modules对象包含多个模块 module_dynamic模块包含动态内容major对象表示主要内容opus对象包含作品信息- 最终
title字段即为所需标题
实现示例
以下是一个典型的Bilibili动态帖子响应示例(简化版):
{
"code": 0,
"data": {
"item": {
"modules": {
"module_dynamic": {
"major": {
"opus": {
"title": "完成了!!",
"pics": [...],
"summary": {...}
}
}
}
}
}
}
}
在这个示例中,我们可以清晰地看到标题"完成了!!"位于预期的JSON路径中。
技术细节
-
参数重要性:
features=itemOpusStyle参数是关键,没有它API会返回不同的数据结构,导致无法获取标题。 -
错误处理:实现时需要处理API可能返回的不同状态码和错误信息,确保在异常情况下也能优雅降级。
-
性能考虑:额外的参数可能会增加API响应时间,需要评估对系统性能的影响。
-
兼容性:需要持续关注Bilibili API的更新,因为这种非标准参数可能会在未来版本中发生变化。
应用场景
这一技术实现使得Danbooru系统能够:
- 准确获取Bilibili动态的标题信息
- 为后续的内容分类和标签处理提供基础数据
- 改善用户体验,提供更完整的内容展示
总结
通过分析Bilibili API的特殊参数需求和响应数据结构,Danbooru项目成功实现了从Bilibili动态中提取帖子标题的功能。这一技术方案展示了如何通过深入研究第三方API的特性来解决特定的数据获取问题,为类似平台的内容集成提供了有价值的参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00