Hatchling构建工具中处理PySide6 UI文件编译的最佳实践
背景介绍
在使用Python构建GUI应用程序时,PySide6是一个流行的Qt框架绑定。PySide6项目中的UI界面通常使用Qt Designer创建,保存为.ui文件,这些文件需要通过pyside6-uic工具编译成Python代码(ui_*.py文件)。这些编译生成的文件需要包含在最终的分发包中,但通常不应该提交到版本控制系统。
传统构建方式的问题
在传统的Python打包方式中,开发者通常使用python setup.py build命令来处理这种情况。然而,这种方法已经被弃用,现代Python项目推荐使用基于pyproject.toml的构建系统。Hatchling作为一个现代化的构建后端,提供了更清晰和可维护的构建配置方式。
Hatchling配置解决方案
要在Hatchling构建系统中正确处理这些编译生成的UI文件,需要进行以下配置:
-
版本控制忽略:在
.gitignore文件中添加ui_*.py,确保编译生成的文件不会被意外提交。 -
构建配置:在
pyproject.toml中添加wheel构建目标配置:
[tool.hatch.build.targets.wheel]
artifacts = ["ui_*.py"]
这个配置告诉Hatchling在构建wheel包时包含所有匹配ui_*.py模式的文件。
构建过程中的注意事项
当使用不同的构建前端工具时,可能会遇到构建行为不一致的情况:
-
直接使用Hatch:当使用
hatch build命令时,Hatchling会直接处理artifacts配置,生成的wheel包会正确包含UI文件。 -
使用build模块:当使用
python -m build时,默认会先构建源分发(sdist)然后再从sdist构建wheel。由于sdist不包含生成的文件,会导致最终wheel中缺少UI文件。
解决方案
针对build模块的行为,有以下几种解决方案:
-
跳过sdist阶段:使用
python -m build -s -w命令直接构建wheel,跳过sdist阶段。 -
完整配置sdist:在
pyproject.toml中同时配置sdist和wheel的artifacts:
[tool.hatch.build.targets.sdist]
artifacts = ["ui_*.py"]
[tool.hatch.build.targets.wheel]
artifacts = ["ui_*.py"]
- 创建Hatch插件:更完善的解决方案是创建一个Hatch插件,在构建过程中自动处理UI文件的编译,这样项目仓库中就不需要包含生成的Python文件,任何克隆仓库的用户都能轻松构建项目。
最佳实践建议
-
自动化构建流程:考虑在项目中使用Hatch插件或自定义构建脚本来自动化UI文件的编译过程。
-
文档说明:在项目文档中明确说明构建步骤和依赖,特别是
pyside6-uic工具的需求。 -
持续集成:在CI/CD流程中确保正确配置构建命令,避免因环境差异导致的构建失败。
通过合理配置Hatchling构建系统,开发者可以优雅地处理PySide6 UI文件的编译和打包问题,同时保持代码仓库的整洁和构建过程的可重复性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00