Super-Gradients中YOLO_NAS_S模型训练时的张量形状问题解析
2025-06-11 22:23:48作者:尤峻淳Whitney
问题背景
在使用Super-Gradients框架训练YOLO_NAS_S模型时,开发者可能会遇到一个常见的张量形状不匹配错误:"IndexError: The shape of the mask [4, 5] at index 1 does not match the shape of the indexed tensor [4, 0, 5] at index 1"。这个问题通常出现在处理自定义数据集时,特别是当标签格式与模型期望的输入格式不完全匹配时。
问题原因分析
这个错误的核心在于数据加载器输出的标签张量与模型内部处理时的期望形状不一致。具体表现为:
- 数据加载器输出的标签形状为[4,5],表示一个批次中有4个样本,每个样本有5个值(类别和边界框坐标)
- 模型内部期望的形状却是[4,0,5],这表明模型预期每个样本可能有多个边界框(第二维为0表示没有检测目标)
这种不匹配通常源于几个方面:
- 训练参数配置不当,特别是损失函数和指标的定义
- 数据集类实现时没有正确处理多目标情况
- 数据预处理步骤与模型预期不符
解决方案
1. 调整训练参数配置
原始配置中使用了PPYoloELoss和BinaryIOU指标,这可能不是最优选择。对于单类目标检测任务,更合适的配置应该是:
train_params = {
"max_epochs": 10,
"lr_mode": "cosine",
"initial_lr": 0.005,
"optimizer": "SGD",
"loss": "YoloXDetectionLoss", # 更适合YOLO_NAS系列的损失函数
"criterion_params": {
"num_classes": 1,
},
"metric_to_watch": "mAP@0.50", # 目标检测更常用的指标
"train_metrics_list": [DetectionMetrics_050()],
"valid_metrics_list": [DetectionMetrics_050()],
}
2. 完善数据集类实现
自定义数据集类需要确保能够处理以下情况:
- 图像可能包含多个目标
- 无目标图像的处理
- 数据增强和预处理
改进后的数据集类应该:
def __getitem__(self, i):
image_path = os.path.join(self.images_folder, self.images[i])
image = self.convert_grayscale_to_3channel(image_path)
image = Image.fromarray(image).convert('RGB')
image_tensor = transforms.ToTensor()(image)
label_path = os.path.join(self.labels_folder, self.labels[i])
targets = []
with open(label_path, 'r') as f:
for line in f:
class_id, x, y, width, height = map(float, line.split())
targets.append([class_id, x, y, width, height])
# 确保至少有一个目标,若无目标则返回空张量
if len(targets) == 0:
targets = torch.zeros((0, 5))
else:
targets = torch.tensor(targets)
return image_tensor, targets
3. 数据加载器配置
确保数据加载器能够正确处理不同数量的目标:
def collate_fn(batch):
images = []
targets = []
for img, tgt in batch:
images.append(img)
targets.append(tgt)
return torch.stack(images), targets
train_dataloader = DataLoader(
train_dataset,
batch_size=4,
shuffle=True,
num_workers=2,
collate_fn=collate_fn
)
经验总结
-
损失函数选择:YOLO_NAS系列模型有其特定的损失函数实现,直接使用PPYoloELoss可能不是最佳选择
-
指标选择:目标检测任务通常使用mAP系列指标,而非IOU指标
-
数据格式:确保标签数据格式与模型预期完全匹配,包括处理无目标图像的情况
-
批次处理:自定义collate_fn函数可以更灵活地处理不同样本中目标数量不一致的情况
通过以上调整,可以解决张量形状不匹配的问题,并使YOLO_NAS_S模型在自定义数据集上顺利训练。在实际应用中,还需要注意学习率调度、数据增强等训练细节,以获得更好的模型性能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~046CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K