Twikit项目:如何获取用户关注列表的技术实现
在Python的Twitter API封装库Twikit中,获取用户关注列表是一个常见的需求。本文将详细介绍这一功能的实现原理和使用方法。
功能背景
Twitter平台允许用户查看自己关注的其他用户列表。在Twikit库中,这一功能最初并未实现,但开发者很快响应了用户需求,在短时间内添加了该功能。
技术实现
Twikit库通过封装Twitter的API接口,提供了获取用户关注列表的方法。具体实现可能包括以下技术要点:
-
API端点封装:Twitter提供了获取用户关系的API端点,Twikit库对这些端点进行了封装,使其更易于使用。
-
认证处理:获取用户关注列表需要适当的认证权限,Twikit库内部处理了OAuth认证流程。
-
分页处理:对于关注数量较多的用户,Twikit可能实现了自动分页机制,确保能获取完整的关注列表。
-
数据格式化:原始API返回的数据经过Twikit的格式化处理,以更友好的数据结构返回给开发者。
使用方法
开发者可以简单地调用相关方法来获取自己的关注列表。虽然具体方法名称未在issue中明确,但根据Twitter API的常规设计,可能会是类似get_following()或get_followed_users()这样的方法。
开发建议
-
错误处理:在使用该功能时,建议添加适当的错误处理逻辑,应对网络问题或API限制等情况。
-
缓存机制:对于频繁访问的场景,可以考虑实现本地缓存,减少API调用次数。
-
异步支持:如果Twikit支持异步IO,使用异步方法可以提高程序效率。
总结
Twikit库通过简洁的Python接口,简化了获取Twitter用户关注列表的操作。这一功能的添加体现了开源项目对用户需求的快速响应能力,也展示了Twikit作为Twitter API封装库的实用性。开发者可以轻松集成这一功能到自己的应用中,实现更丰富的Twitter数据分析和社交功能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00