Twikit项目:如何获取用户关注列表的技术实现
在Python的Twitter API封装库Twikit中,获取用户关注列表是一个常见的需求。本文将详细介绍这一功能的实现原理和使用方法。
功能背景
Twitter平台允许用户查看自己关注的其他用户列表。在Twikit库中,这一功能最初并未实现,但开发者很快响应了用户需求,在短时间内添加了该功能。
技术实现
Twikit库通过封装Twitter的API接口,提供了获取用户关注列表的方法。具体实现可能包括以下技术要点:
-
API端点封装:Twitter提供了获取用户关系的API端点,Twikit库对这些端点进行了封装,使其更易于使用。
-
认证处理:获取用户关注列表需要适当的认证权限,Twikit库内部处理了OAuth认证流程。
-
分页处理:对于关注数量较多的用户,Twikit可能实现了自动分页机制,确保能获取完整的关注列表。
-
数据格式化:原始API返回的数据经过Twikit的格式化处理,以更友好的数据结构返回给开发者。
使用方法
开发者可以简单地调用相关方法来获取自己的关注列表。虽然具体方法名称未在issue中明确,但根据Twitter API的常规设计,可能会是类似get_following()或get_followed_users()这样的方法。
开发建议
-
错误处理:在使用该功能时,建议添加适当的错误处理逻辑,应对网络问题或API限制等情况。
-
缓存机制:对于频繁访问的场景,可以考虑实现本地缓存,减少API调用次数。
-
异步支持:如果Twikit支持异步IO,使用异步方法可以提高程序效率。
总结
Twikit库通过简洁的Python接口,简化了获取Twitter用户关注列表的操作。这一功能的添加体现了开源项目对用户需求的快速响应能力,也展示了Twikit作为Twitter API封装库的实用性。开发者可以轻松集成这一功能到自己的应用中,实现更丰富的Twitter数据分析和社交功能。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00