osquery在macOS 15中alf_exceptions表查询问题解析
在macOS系统监控工具osquery的最新版本中,开发人员发现了一个与应用程序防火墙(Application Layer Firewall, ALF)相关的功能异常。当用户在macOS 15系统上执行alf_exceptions表查询时,无法获取预期的防火墙例外规则数据。
问题现象
当用户尝试通过osquery查询alf_exceptions表时,系统返回空结果集,同时在日志中记录错误信息:"Error parsing /Library/Preferences/com.apple.alf.plist: Unable to read plist: /Library/Preferences/com.apple.alf.plist"。这表明osquery无法正确读取和解析macOS系统的防火墙配置文件。
技术背景
macOS的应用程序防火墙(ALF)配置通常存储在/Library/Preferences/com.apple.alf.plist文件中。这个plist文件包含了系统防火墙的所有设置,包括允许或阻止特定应用程序网络通信的规则。在macOS 15之前,osquery通过直接读取和解析这个plist文件来获取防火墙例外规则。
问题根源
经过分析,这个问题与macOS 15系统的安全机制变更有关。新版本系统可能调整了防火墙配置的存储位置或格式,导致传统的plist文件读取方式失效。实际上,macOS 15引入了新的防火墙配置管理方式,系统现在通过system_profiler工具以JSON格式提供防火墙状态信息。
解决方案
开发团队已经针对此问题发布了修复补丁。新的实现方案改为通过system_profiler工具获取防火墙配置数据,这与macOS 15系统的设计变更保持一致。具体来说,修复后的osquery会执行"system_profiler -json SPFirewallDataType"命令来获取防火墙状态,然后解析返回的JSON数据来填充alf_exceptions表。
技术影响
这一变更不仅解决了macOS 15下的兼容性问题,还带来了以下优势:
- 更可靠的数据获取方式,不再依赖直接读取可能受保护的plist文件
- 与系统原生工具保持一致,减少未来系统升级带来的兼容性问题
- 支持更丰富的防火墙配置信息,包括全局状态、日志设置等
用户建议
对于使用osquery监控macOS系统的用户,建议:
- 升级到包含此修复的osquery版本(5.13.1之后)
- 检查现有的监控脚本,确保它们能正确处理alf_exceptions表的新数据结构
- 注意macOS系统更新可能带来的类似配置存储方式变更
这个问题展示了系统监控工具如何需要不断适应底层操作系统的变化,也体现了osquery团队对macOS系统特性的快速响应能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00