Flutter Hooks中useFuture和useStream的正确使用方式
2025-06-25 09:46:35作者:毕习沙Eudora
理解问题本质
在Flutter Hooks项目中,开发者经常遇到一个常见问题:当使用useFuture或useStream时,widget的build方法会被频繁调用,即使Future或Stream本身没有更新。这种现象会导致性能问题和意外的行为。
问题原因分析
这种问题的根本原因在于每次build方法执行时,都会创建一个新的Future或Stream实例。由于useFuture和useStream会在传入的Future/Stream发生变化时重新开始监听,因此每次build都会触发一个新的监听周期,导致widget不断重建。
解决方案:使用useMemoized
正确的做法是使用useMemoized来缓存Future或Stream实例。useMemoized可以确保在widget重建时返回相同的Future/Stream实例,而不是每次都创建新的。
useFuture的正确用法
class PageOne extends HookWidget {
const PageOne({super.key});
@override
Widget build(BuildContext context) {
final future = useMemoized(() => Future.delayed(
const Duration(milliseconds: 500),
() => 'complete',
));
final snapshot = useFuture(future);
return Scaffold(
appBar: AppBar(title: const Text('use future')),
body: Center(child: Text(snapshot.data ?? 'in progress')),
);
}
}
useStream的正确用法
class PageTwo extends HookWidget {
final int start;
final int finish;
const PageTwo({
super.key,
required this.start,
required this.finish,
});
@override
Widget build(BuildContext context) {
final stream = useMemoized(() => generateRange(start, finish));
final snapshot = useStream(stream);
return Scaffold(
appBar: AppBar(title: const Text('use stream')),
body: Center(child: Text(snapshot.data.toString())),
);
}
}
性能优化建议
-
依赖项管理:useMemoized的第二个参数可以指定依赖项数组,当这些依赖项变化时才重新计算值。合理设置依赖项可以避免不必要的重新计算。
-
错误处理:在使用useFuture和useStream时,应该考虑错误状态的处理,为用户提供适当的反馈。
-
加载状态:在数据加载期间,显示加载指示器可以提升用户体验。
深入理解Hook机制
Flutter Hooks的设计理念是让开发者能够更高效地管理widget的状态和生命周期。useFuture和useStream作为常用的Hook,其行为与React Hooks类似,都遵循"稳定依赖"的原则。理解这一点对于正确使用Hooks至关重要。
最佳实践总结
- 对于任何会产生新实例的操作,都应该考虑使用useMemoized进行缓存
- 保持Hook的依赖稳定是避免不必要重建的关键
- 复杂的异步操作可以考虑使用专门的Hook如useAsync或自定义Hook
- 在性能敏感的场景下,应该监控widget的重建次数
通过遵循这些最佳实践,开发者可以充分利用Flutter Hooks的优势,同时避免常见的性能陷阱。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1